Cysticercosis laboratory findings

Revision as of 20:56, 9 August 2017 by Ahmed Younes (talk | contribs)
Jump to navigation Jump to search

Cysticercosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Cysticercosis from Other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

CT

MRI

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Case Studies

Case #1

Cysticercosis laboratory findings On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Cysticercosis laboratory findings

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Cysticercosis laboratory findings

CDC on Cysticercosis laboratory findings

Cysticercosis laboratory findings in the news

Blogs on Cysticercosis laboratory findings

Directions to Hospitals Treating Cysticercosis

Risk calculators and risk factors for Cysticercosis laboratory findings

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1];Associate Editor(s)-in-Chief: Ahmed Younes M.B.B.CH [2]

Overview

There is no single gold standard for diagnosing cysticercosis (except for biopsy which is rarely done). Diagnosis is made by combining data from various investigations and suspecting the disease. A set of diagnostic criteria was proposed in 2001 based on combination of epidemiological factors, clinical manifestations, laboratory and radiological investigations.

Diagnostic criteria

A set of diagnostic criteria were proposed by Del Brutto et al based on the laboratory and imaging tests. The criteria were modified in 2001 to be:[1]

Categories Details
Absolute
  • Histologic confirmation of the parasite on a biopsy from a lesion in the brain or spinal cord
  • Visualization of subretinal parasites directly using funduscopic examination
Major
Minor
Epidemiologic
  • Evidence of T.solium infection in a household contact
  • Individuals who are staying in or coming from an area of cysticercosis endemicity
  • Household contact with an individual infected with Taenia Solium
  • History of traveling frequently to a disease endemic areas
Certainty of diagnosis after applying the criteria
Certainty of diagnosis Details
Definitive
  • Fulfilling 1 absolute criterion
  • Fulfilling 2 major criteria in addition to 1 minor criterion and 1 epidemiologic criterion
Probable
  • Fulfilling 1 major criterion in addition to 2 minor criteria
  • Fulfilling 1 major criterion in addition to 1 minor criterion and 1 epidemiologic criterion
  • Fulfilling 3 minor criteria in addition to 1 epidemiologic criterion

Laboratory Findings

The definitive diagnosis consists of demonstrating the cysticercus in the tissue involved. Demonstration of Taenia Solium eggs and proglottids in the feces diagnoses taeniasis and not cysticercosis. While suggestive, it does not necessarily prove that cysticercosis is present. Persons who are found to have eggs or proglottids in their feces should be evaluated serologically since autoinfection resulting in cysticercosis can occur.

Enzyme-linked immunoelectrotransfer blot (EITB)

  • CDC's immunoblot is both more specific and more sensitive than enzyme immunoassay (EIA) systems with which it has been compared. Lack of specificity has been a major problem in most EIAs because of cross-reacting components in crude antigens derived from cysticerci; these components react with antibodies specific for other helminthic infections, especially echinococcosis and filariasis. Most partially purified fractions evaluated in an EIA appear to have lower sensitivity than crude antigens and do not necessarily achieve higher specificity. Assays employing crude antigens for the detection of antibody are not reliable for the identification of this disease; all positives and any negative strongly suspected of cysticercosis should be confirmed by immunoblot. Currently available antibody detection tests for cysticercosis do not distinguish between active and inactive infections and thus have not been useful in evaluating the outcomes and prognoses of medically treated patients. Both the CDC immunoblot and an EIA are commercially available in the United States.
  • CDC's immunoblot assay with purified Taenia solium antigens has been acknowledged by the World Health Organization and the Pan American Health Organization as the immunodiagnostic test of choice for confirming a clinical and radiologic presumptive diagnosis of neurocysticercosis.
Cysticercosis immunoblot - Source: https://www.cdc.gov/

Using monoclonal antibodies to detect parasitic antigen

Can be used for following the response to treatment but less sensitive than EITB in detecting the disease.[3]

Stool Examination

  • Microscopic identification of eggs and proglottids in feces is diagnostic for taeniasis; however, eggs and proglottids are not released into the feces until approximately 2 to 3 months after the adult tapeworm is established in the upper jejunum.
  • Repeated examination and concentration techniques will increase the likelihood of detecting light infections. Examination of 3 stool samples collected on different days is recommended to increase the sensitivity of microscopic methods.
  • Eggs of Taenia spp. cannot be differentiated; a species determination may be possible if mature, gravid proglottids (or, more rarely, examination of the scolex) are present.

CSF analysis

References

  1. Del Brutto OH, Rajshekhar V, White AC, Tsang VC, Nash TE, Takayanagui OM, Schantz PM, Evans CA, Flisser A, Correa D, Botero D, Allan JC, Sarti E, Gonzalez AE, Gilman RH, García HH (2001). "Proposed diagnostic criteria for neurocysticercosis". Neurology. 57 (2): 177–83. PMC 2912527. PMID 11480424.
  2. "CDC - Cysticercosis - Resources for Health Professionals".
  3. 3.0 3.1 Oot RF, Melville GE, New PF, Austin-Seymour M, Munzenrider J, Pile-Spellman J, Spagnoli M, Shoukimas GM, Momose KJ, Carroll R (1988). "The role of MR and CT in evaluating clival chordomas and chondrosarcomas". AJR Am J Roentgenol. 151 (3): 567–75. doi:10.2214/ajr.151.3.567. PMID 3261519.
  4. Machado Ldos R, Livramento JA, Vianna LS (2013). "Cerebrospinal fluid analysis in infectious diseases of the nervous system: when to ask, what to ask, what to expect". Arq Neuropsiquiatr. 71 (9B): 693–8. doi:10.1590/0004-282X20130153. PMID 24141507.


Template:WikiDoc Sources