Osteoporosis natural history, complications and prognosis
Osteoporosis Microchapters |
Diagnosis |
---|
Treatment |
Medical Therapy |
Case Studies |
Osteoporosis natural history, complications and prognosis On the Web |
American Roentgen Ray Society Images of Osteoporosis natural history, complications and prognosis |
FDA on Osteoporosis natural history, complications and prognosis |
CDC on Osteoporosis natural history, complications and prognosis |
Osteoporosis natural history, complications and prognosis in the news |
Blogs on Osteoporosis natural history, complications and prognosis |
Risk calculators and risk factors for Osteoporosis natural history, complications and prognosis |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Eiman Ghaffarpasand, M.D. [2]
Overview
If left untreated, most of the patients with osteoporosis develop fractures. With the appropriate and timely usage of medications along with calcium and/or vitamin D supplementation, the outcome of osteoporosis is usually good. Apart from the risk of death and other complications, osteoporotic fractures are associated with deep venous thrombosis, kyphosis, and a reduced quality of life due to immobility.
Natural history, complications, and prognosis
Natural history
- Symptoms of osteoporosis typically develop in the sixth decade of life. The risk of osteoporosis increases proportionately with age.
- Researchers have shown that relationship between age and decreased bone density of spine is not linear, but quadratic; in which bone loss tails off with increasing age. During the first years of the postmenopausal period, women would have a fast decrease in bone density of spine by the rate of 3.12% annually; then the rate slows down to 0.02% per square with increasing age.[1]
- Guthrie also mentioned that in first 3 years after menopause, the rate of decreasing bone density increased annually; then with years past from menopause, the rate of bone loss slowed down.[2]
- Another major factor that directly impacts changing BMD is body weight; women with increased body weight and body mass index (BMI) may have more change in their BMD in both hip and lumbar spine, during the course of time.
- Surprisingly, the bone site is an important factor to determine the measure of bone loss. The studies have found that magnitude of bone density loss is higher at the spine (-3.12% annually) compared to the femoral neck (1.67% annually). The main proposed theory for the phenomenon is "different effect of estrogen deficiency on different bone sites". On the other hand, it may show the preventive effect of weight bearing on hip osteoporosis.[1]
- With the appropriate and timely usage of medications along with calcium and/or vitamin D supplementation, the outcome of osteoporosis is usually good. But if the disease is left untreated, or not treated optimally, results in fracture leading to increased morbidity and mortality. The main type of fracture that influences the quality of life more and happens earlier, is the vertebral fracture.[3]
Complications
- The major probable complications of osteoporosis include:
- Fractures: hip and lumbar spine are among the most frequent sites of fracture.
- Deep venous thrombosis (DVT): It can be caused by prolonged immobility.
- Kyphosis (Dowager's hump): Due to decreased height of anterior aspect of cervical vertebrae body (wedge shape).
- Restrictive lung disease: Due to decreased thoracic space, due to vertebral compression.
- Apart from the risk of death and other complications, osteoporotic fractures are associated with a reduced quality of life due to immobility and other emotional problems resulting from osteoporosis.[4]
Fracture risk
Fracture risk categories in glucocorticoid-treated patients are listed in the table below.[5]
Adults ≥ 40 years of age | Adults <40 years of age | |
---|---|---|
High fracture risk |
|
|
Moderate fracture risk |
|
or and
|
Low fracture risk |
|
|
Prognosis
- Early identification of the bone mass density loss and appropriate treatment results in a good prognosis of osteoporosis.
- The most important issue to identify the osteoporosis prognosis is fractures; mainly affected by two factors:
- Advancing age
- Low BMD.
The relation consists of having about a 2-fold increase in the risk of various fractures following a decrease of BMD by every SD or an increase in age by 5 years.[6]
- When the lifetime fracture at age 60 is adjusted with the death rate, it may be 44% for womean and 25% for men. The lifetime fracture risk for hip is 9% in women and 4% in men. The researchers suggest that lifetime risk of the hip fracture in 60 years old women is 1 in 7 (15%); which is higher than estimated lifetime risk of breast cancer (9.3%). Similarly, fracture risk of hip and vertebrae in men (15%) is totally noticeable along with their prostate cancer risk. This means that the impact of osteoporosis and also osteoporotic fractures on public life would be worse than lot of other life threatening diseases; especially with aging.[7]
- Most children with idiopathic juvenile osteoporosis (IJO) experience a complete recovery of bone tissue. Although growth may be somewhat impaired during the acute phase of the disorder, normal growth resumes—and catch-up growth often occurs—afterwards. Unfortunately, in some cases, IJO can result in permanent disability such as kyphoscoliosis or collapse of the rib cage.[8]
References
- ↑ 1.0 1.1 Zhai G, Hart DJ, Valdes AM, Kato BS, Richards JB, Hakim A; et al. (2008). "Natural history and risk factors for bone loss in postmenopausal Caucasian women: a 15-year follow-up population-based study". Osteoporos Int. 19 (8): 1211–7. doi:10.1007/s00198-008-0562-x. PMID 18305885.
- ↑ Guthrie JR, Ebeling PR, Hopper JL, Barrett-Connor E, Dennerstein L, Dudley EC, Burger HG, Wark JD (1998). "A prospective study of bone loss in menopausal Australian-born women". Osteoporos Int. 8 (3): 282–90. doi:10.1007/s001980050066. PMID 9797914.
- ↑ Lips P, Cooper C, Agnusdei D, Caulin F, Egger P, Johnell O, Kanis JA, Liberman U, Minne H, Reeve J, Reginster JY, de Vernejoul MC, Wiklund I (1997). "Quality of life as outcome in the treatment of osteoporosis: the development of a questionnaire for quality of life by the European Foundation for Osteoporosis". Osteoporos Int. 7 (1): 36–8. PMID 9102060.
- ↑ Brenneman SK, Barrett-Connor E, Sajjan S, Markson LE, Siris ES (2006). "Impact of recent fracture on health-related quality of life in postmenopausal women". J. Bone Miner. Res. 21 (6): 809–16. doi:10.1359/jbmr.060301. PMID 16753011.
- ↑ Buckley, Lenore; Guyatt, Gordon; Fink, Howard A.; Cannon, Michael; Grossman, Jennifer; Hansen, Karen E.; Humphrey, Mary Beth; Lane, Nancy E.; Magrey, Marina; Miller, Marc; Morrison, Lake; Rao, Madhumathi; Robinson, Angela Byun; Saha, Sumona; Wolver, Susan; Bannuru, Raveendhara R.; Vaysbrot, Elizaveta; Osani, Mikala; Turgunbaev, Marat; Miller, Amy S.; McAlindon, Timothy (2017). "2017 American College of Rheumatology Guideline for the Prevention and Treatment of Glucocorticoid-Induced Osteoporosis". Arthritis & Rheumatology. 69 (8): 1521–1537. doi:10.1002/art.40137. ISSN 2326-5191.
- ↑ Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM (1993). "Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group". Lancet. 341 (8837): 72–5. PMID 8093403.
- ↑ Nguyen ND, Ahlborg HG, Center JR, Eisman JA, Nguyen TV (2007). "Residual lifetime risk of fractures in women and men". J Bone Miner Res. 22 (6): 781–8. doi:10.1359/jbmr.070315. PMID 17352657.
- ↑ "Juvenile Osteoporosis".