The PLIN4 gene resides on chromosome 19 at the band 19p13.3 and contains 9 exons.[1]
Protein
This protein belongs to the perilipin family and contains 27 33-amino acid approximate tandem repeats.[7] It is also one of the perilipin members of the PATS (PLIN, ADFP, TIP47, S3-12) family, which is named after structural proteins that share high amino acid sequence similarity and associate with lipid droplets.[2] It shares a conserved C-terminal of 14 amino acid residues that folds into a hydrophobic cleft with other PATS members; however, it is missing the conserved N-terminal region of approximately 100 amino acid residues. Within the sequence of 33-amino acid repeats, PLIN4 contains a long stretch of imperfect 11-mer repeats predicted to form amphipathic helices with three helical turns per 11 amino acid residues. This 11-mer repeats tract is proposed to anchor the protein to the phospholipid monolayer of lipid droplets for its assembly, though no targeting sequence has yet been found in PLIN4.[3]
Function
PLIN4 is a member of the perilipin family, a group of proteins that coat lipid droplets in adipocytes,[4] the adipose tissue cells that are responsible for storing fat. Perilipin acts as a protective coating from the body’s natural lipases, such as hormone-sensitive lipase,[5] which break triglycerides into glycerol and free fatty acids for use in metabolism, a process called lipolysis.[8] In humans, perilipin is expressed as 5 different isoforms; it is currently understood that the level of expression for each isoform is dependent on factors such as sex, body mass index, and level of endurance exercise.[9]
PLIN4 is hyperphosphorylated by PKA following β-adrenergic receptor activation. Phosphorylated perilipin changes conformation, exposing the stored lipids to hormone-sensitive lipase-mediated lipolysis. Although PKA also phosphorylates hormone-sensitive lipase, which can increase its activity, the more than 50-fold increase in fat mobilization (triggered by epinephrine) is primarily due to perilipin phosphorylation.
Clinical significance
The proteins in the Perilipin family are crucial regulators of lipid storage.[8] PLIN4 expression is elevated in obese animals and humans. Perilipin-null mice eat more food than wild-type mice, but gain 1/3 less fat than wild-type mice on the same diet; perilipin-null mice are thinner, with more lean muscle mass.[10] Perilipin-null mice also exhibit enhanced leptin production and a greater tendency to develop insulin resistance than wild-type mice.
The PLIN4 gene, along with PLIN2, PLIN3, and PLIN5, have been associated with variance in body-weight regulation and may be a genetic influence on obesity risk in humans.[6]
↑ 3.03.1Brasaemle DL (December 2007). "Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis". Journal of Lipid Research. 48 (12): 2547–59. doi:10.1194/jlr.R700014-JLR200. PMID17878492.
↑ 4.04.1Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie EJ, Londos C (June 1991). "Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets". The Journal of Biological Chemistry. 266 (17): 11341–6. PMID2040638.
↑ 6.06.1Soenen S, Mariman EC, Vogels N, Bouwman FG, den Hoed M, Brown L, Westerterp-Plantenga MS (March 2009). "Relationship between perilipin gene polymorphisms and body weight and body composition during weight loss and weight maintenance". Physiology & Behavior. 96 (4–5): 723–8. doi:10.1016/j.physbeh.2009.01.011. PMID19385027.
↑Universal protein resource accession number Q96Q06 for "PLIN4 - Perilipin-4 - Homo sapiens - PLIN4 gene & protein" at UniProt.
↑ 8.08.1Wolins NE, Skinner JR, Schoenfish MJ, Tzekov A, Bensch KG, Bickel PE (September 2003). "Adipocyte protein S3-12 coats nascent lipid droplets". The Journal of Biological Chemistry. 278 (39): 37713–21. doi:10.1074/jbc.M304025200. PMID12840023.
↑Peters SJ, Samjoo IA, Devries MC, Stevic I, Robertshaw HA, Tarnopolsky MA (August 2012). "Perilipin family (PLIN) proteins in human skeletal muscle: the effect of sex, obesity, and endurance training". Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition Et Metabolisme. 37 (4): 724–35. doi:10.1139/h2012-059. PMID22667335.
Sone Y, Yamaguchi K, Fujiwara A, Kido T, Kawahara K, Ishiwaki A, Kondo K, Morita Y, Tominaga N, Otsuka Y (2010). "Association of lifestyle factors, polymorphisms in adiponectin, perilipin and hormone sensitive lipase, and clinical markers in Japanese males". Journal of Nutritional Science and Vitaminology. 56 (2): 123–31. PMID20495294.
Wolins NE, Skinner JR, Schoenfish MJ, Tzekov A, Bensch KG, Bickel PE (September 2003). "Adipocyte protein S3-12 coats nascent lipid droplets". The Journal of Biological Chemistry. 278 (39): 37713–21. doi:10.1074/jbc.M304025200. PMID12840023.
Nagase T, Kikuno R, Ohara O (August 2001). "Prediction of the coding sequences of unidentified human genes. XXI. The complete sequences of 60 new cDNA clones from brain which code for large proteins". DNA Research. 8 (4): 179–87. doi:10.1093/dnares/8.4.179. PMID11572484.
Peters SJ, Samjoo IA, Devries MC, Stevic I, Robertshaw HA, Tarnopolsky MA (August 2012). "Perilipin family (PLIN) proteins in human skeletal muscle: the effect of sex, obesity, and endurance training". Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition Et Metabolisme. 37 (4): 724–35. doi:10.1139/h2012-059. PMID22667335.