Thrombocytopenia pathophysiology

Revision as of 21:41, 25 June 2018 by Farbod Zahedi (talk | contribs)
Jump to navigation Jump to search

Thrombocytopenia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Thrombocytopenia from other Diseases

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Thrombocytopenia pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Thrombocytopenia pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Thrombocytopenia pathophysiology

CDC on Thrombocytopenia pathophysiology

Thrombocytopenia pathophysiology in the news

Blogs on Thrombocytopenia pathophysiology

Directions to Hospitals Treating Thrombocytopenia

Risk calculators and risk factors for Thrombocytopenia pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1], Associate Editor-In-Chief: Farbod Zahedi Tajrishi

Overview

Pathophysiology

Physiology

Platelets are produced in hematopoiesis by budding off from megakaryocytes, which are produced by pluripotent hematopoietic stem cells.[1] Each megakaryocyte produces 1000 to 5000 platelets. Platelets circulate for approximately one week, and are then destroyed by the spleen and by Kuppfer cells in the liver.

Pathogenesis

It is thought that thrombocytopenia is the result of either of these four main mechanisms:

  • decreased production of platelets in the bone marrow,
  • destruction of platelets outside of bone marrow,
  • blood dilution from fluid resuscitation or massive transfusion,
  • sequestration of platelets in the spleen due to portal hypertension and/or splenomegaly.

Some conditions cause thrombocytopenia through a combination of these mechanisms. For instance, primary ITP is associated with antibody-mediated platelet destruction, but it can also cause suppression of megacaryocytes, which is considered a bone marrow dysfunction.

main cause mechanism and further explanations examples
Bone marrow dysfunction  Bone marrow abnormalities that cause decreased platelet production commonly reduce the production of RBCs and WBCs as well, resulting in pancytopenia. Common presentations include symptoms of thrombocytopenia (eg, bleeding, petechiae) or symptoms associated with anemia and/or leukopenia (eg, shortness of breath, fatigue and recurrent infections).
Platelet destruction/consumption Several mechanisms can accelerate the normal platelet degradation process in the body:

Anti-platelet antibodies seen in both primary ITP and its secondary form (associated with systemic autoimmune disorders such as SLE) play a main role. Antibody-mediated reactions can also cause a reduction in other blood cell lines, resulting in combined cytopenias. Some medications and ingested substances can also cause thrombocytopenia through this mechanism.

Dilution Dilutional thrombocytopenia is an iatrogenic form of thrombocytopenia caused by massive fluid resuscitation or massive blood transfusion. There is a correlation between the decrease in platelet count and the number of RBC units transfused during the course of a day.[2]
  • massive transfusion
  • massive fluid resuscitation
Redistribution/splenomegaly In individuals with normal splenic function, approximately one-third of the platelet mass is found in the spleen, in equilibrium with the circulating platelet pool [12]. Conditions that increase splenic size and/or cause splenic congestion through portal hypertension (eg, cirrhosis, alcoholic liver disease) can decrease the platelet count without altering the total platelet mass in the body (figure 1) [12]. Severe thrombocytopenia or bleeding in the setting of splenomegaly should prompt the clinician to investigate for other causes.
  • cirrhosis
  • alcoholic liver disease

References

  1. Klein LS, Shih HT, Hackett FK, Zipes DP, Miles WM (1992). "Radiofrequency catheter ablation of ventricular tachycardia in patients without structural heart disease". Circulation. 85 (5): 1666–74. PMID 1572025.
  2. Counts RB, Haisch C, Simon TL, Maxwell NG, Heimbach DM, Carrico CJ (1979). "Hemostasis in massively transfused trauma patients". Ann Surg. 190 (1): 91–9. PMC 1344465. PMID 464685.

Template:WS Template:WH