Stevens-Johnson syndrome pathophysiology
Stevens-Johnson syndrome Microchapters |
Differentiating Stevens-Johnson Syndrome from other Diseases |
---|
Diagnosis |
Treatment |
Case Studies |
Stevens-Johnson syndrome pathophysiology On the Web |
American Roentgen Ray Society Images of Stevens-Johnson syndrome pathophysiology |
Risk calculators and risk factors for Stevens-Johnson syndrome pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:
Overview
SJS, like toxic epidermal necrolysis and erythema multiforme, are characterized by confluent epidermal necrosis with minimal associated inflammation. The acuity is apparent from the (normal) basket weave-like pattern of the stratum corneum.
Pathophysiology
Pathogenesis
- The exact pathogenesis of SJS/TEN is not completely understood
- However, It is believed that SJS/TEN is immune mediated and the result of a MHC Class-I restricted T-cell mediated cytotoxic reaction to drug antigens in keratinocytes leading to apoptosis[1]
- Drug antigens bind to MHC-I and T cell Receptors (TCR) leading to the clonal proliferation of the drug specific cytotoxic T cells
- T lymphocytes found in bisters were CD8+, HLA-DR+, CLA+ (cutaneous lymphocyte antigen), CD56+ and were shown to be strongly immunoreactive for granzyme B suggesting perforin/granzyme mediated cytotoxicity[2]
- There is also beleived to be some involvement of the soluble FasL (sFasL) in keratinocyte apoptosis in SJS and TEN. sFasL is secreted by peripheral bood mononuclear cells (PBMC's) and interacts with the Fas that is expressed on keratinocyte leading to apoptosis. Higher serum levels of sFasL may be seen in patients with suspicion of SJS/TEN[3]
Genetics
[Disease name] is transmitted in [mode of genetic transmission] pattern.
OR
Genes involved in the pathogenesis of [disease name] include:
- [Gene1]
- [Gene2]
- [Gene3]
OR
The development of [disease name] is the result of multiple genetic mutations such as:
- [Mutation 1]
- [Mutation 2]
- [Mutation 3]
Associated Conditions
Gross Pathology
On gross pathology, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].
Microscopic Pathology
On microscopic histopathological analysis, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].
References
- ↑ Correia O, Delgado L, Ramos JP, Resende C, Torrinha JA (1993). "Cutaneous T-cell recruitment in toxic epidermal necrolysis. Further evidence of CD8+ lymphocyte involvement". Arch Dermatol. 129 (4): 466–8. PMID 8466217.
- ↑ Nassif A, Bensussan A, Boumsell L, Deniaud A, Moslehi H, Wolkenstein P; et al. (2004). "Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T cells". J Allergy Clin Immunol. 114 (5): 1209–15. doi:10.1016/j.jaci.2004.07.047. PMID 15536433.
- ↑ Abe R, Shimizu T, Shibaki A, Nakamura H, Watanabe H, Shimizu H (2003). "Toxic epidermal necrolysis and Stevens-Johnson syndrome are induced by soluble Fas ligand". Am J Pathol. 162 (5): 1515–20. doi:10.1016/S0002-9440(10)64284-8. PMC 1851208. PMID 12707034.