Severe combined immunodeficiency

Revision as of 17:33, 1 October 2018 by Mohsen Basiri (talk | contribs)
Jump to navigation Jump to search
Severe combined immunodeficiency
ICD-10 D81.0-D81.2
ICD-9 279.2
DiseasesDB 11978
eMedicine med/2214 
MeSH D016511

Template:Search infobox Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor-In-Chief: Mohsen Basiri M.D.

Overview

Historical Perspective

Severe combined immunodeficiency was first reported by Glanzmann and Riniker in 1950. Swiss infants with the condition were profoundly lymphopenic and died of infection before their first or second birthdays.[1] The first discovered molecular cause of SCID, adenosine deaminase deficiency, was reported in 1972.[2] Severe Combined Immunodeficiency may be best known from news stories and a movie in the 1980s about David Vetter, the Boy in the Bubble, who was a prominent sufferer of severe combined immunodeficiency and became famous for living in a sterile environment.

In 1993, the molecular basis of X-linked human SCID was discoverd.[3] Progress in molecular biology and the Human Genome Project, as well as increased knowledge of diverse components of the immune system through evaluations of mutant mice and humans with genetically diagnosed immunodeficiencies, have all contributed to this comprehension.

Classification

Previous classification system for SCID was based upon the presence of molecular defects affecting T cell numbers and presence or absence of defects affecting B and/or NK cell numbers, and SCID syndromes were classified as T-B+NK+, T-B+NK-, T-B-NK+, or T-B-NK- (cell type present: + and cell type abscent: -).

Beyond this phenotypic classification and the functional status of these cells, since the mutated genes responsible for the majority of patients with SCID are now recognized,Then, it is more acceptable to classify SCID based upon the particular molecular defect once it is detected, in addition, the genotype identification can affect treatment methods and measurements for post treatment complications.[4]

Type Gene defects Description
X-linked severe combined immunodeficiency IL-2R common gamma chain IL2RG is a protein that is shared by the receptors for interleukins IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21. These interleukins and their receptors are involved in the development and differentiation of T and B cells. mutations cause widespread defects in interleukin signalling. The result is a near complete failure of the immune system to develop and function, with low or absent T cells and NK cells and non-functional B cells. IL2RG is encoded on the X chromosome; therefore, this variant of SCID is X-linked, and account for approximately 50% of all patients with SCID.
Janus-associated kinase 3 deficiency (T B+NK) Janus kinase 3 JAK3 is a protein tyrosine kinase (PTK) that associates with the common γ chain of the IL receptors. Deficiency of this protein results in the same clinical manifestations as those of XL-SCID.
Adenosine deaminase deficiency ADA ADA deficiency accounts for 20% of all SCID cases. Adenosine deaminase (ADA), is necessary for the breakdown of purines. Lack of ADA leads to the accumulation of intermediate dATP, which results in lymphocyte toxicity,particularly with immature thymic lymphocytes, then lymphocyte proliferation is inhibited and the immune system is compromised.
Bare lymphocyte syndrome gene regulating expression of MHC type II Bare lymphocyte syndrome is a deficiency of major histocompatibility complex (MHC). MHC type II is decreased on mononuclear cells. MHC type I levels may be decreased or absent entirely. The defect occurs in a gene regulating expression of MHC type II ζ chain–associated protein (ZAP)-70 deficiency Tyrosine kinase }
Reticular dysgenesis Adenylate kinase 2 Reticular dysgenesis is a rare variant of SCID arising from the inability of granulocyte precursors to form granules secondary to mitochondrial adenylate kinase 2 malfunction.
IL-7R α chain deficiency IL-7RA
Deficiency of the recombination-activating genes RAG1 and RAG2 (T B NK+) RAG1/RAG2
Ligase 4 deficiency (T B NK+)
CD45 deficiency
Omenn syndrome The manufacture of immunoglobulins requires recombinase enzymes derived from the recombination activating genes RAG-1 and RAG-2. These enzymes are involved in the first stage of V(D)J recombination, the process by which segments of a B cell or T cell's DNA are rearranged to create a new T cell receptor or B cell receptor (and, in the B cell's case, the template for antibodies).

Certain mutations of the RAG-1 or RAG-2 genes prevent V(D)J recombination, causing SCID.

Artemis/DCLRE1C DCLRE1C An enzyme that opens DNA hairpin during variable diversity joining [VDJ] rearrangement and RAG1 and RAG2 deficiencies

Pathophysiology

SCID is a syndrome caused by mutations in any of more than 15 known genes, whose products are pivotal for the development, function, differentiation and proliferation of both T and B cells and may also affect natural killer (NK) cells. Antibody production is severely impaired even when mature B cells are present, since B cells require signals from T cells to produce antibody. NK cells are present in approximately 50 percent of patients with SCID and may provide a degree of protection against bacterial and viral infections in these patients. Determining the presence or absence of NK cells is also helpful in classifying patients with SCID.

Causes

Combined immunodeficiency diseases are a heterogeneous group of disorders arising from mutations in any of more than 15 known gene, the most common genetic condition responsible for SCID is a mutation of the common γ chain of the interleukin (IL) receptors. A list of gene defects that cause SCID is presented in the below table:

Gene defects causing severe combined immunodeficiency
IL-2R common gamma chain ILR2
Janus kinase 3 JAK3
IL-7Ra chain IL7RA
IL-2Ra chain (CD25) deficiency ILR2
CD45 PTPRC
CD3 delta OR epsilon OR zeta CD3
Coronin 1A CORO1A
Recombinase activating genes 1 and 2 RAG1/RAG2
DNA cross-link repair enzyme 1C DCLRE1C(Artemis)
Adenosine deaminase ADA
Adenylate kinase 2 AK2
DNA ligase IV LIG4
Nonhomologous end-joining protein 1 NHEJ1

Differentiating Severe combined immunodeficiency from Other Diseases

Epidemiology and Demographics

A study using data from newborn screening for SCID in the United States found an incidence of 1 in 58,000 livebirths for SCID, inclusive of typical SCID, leaky SCID, and Omenn syndrome. [5] The incidence of autosomal-recessive SCID is higher in cultures in which consanguineous marriage is common.[6]

Risk Factors

There are no established risk factors for SCID, however, the incidence of autosomal-recessive SCID is higher in cultures in which consanguineous marriage is common.[7]

Screening

preferably, SCID can be diagnosed in a newborn before the beginning of infections, with one well-documented example by screening of T-cell–receptor excision circles(TRECs). Since the goal of newborn screening is to detect treatable disorders that are threatening to life or long-term health before they become symptomatic and prompt treatment of SCID may notably reduce mortality and morbidity among patients. Infants with SCID without reconstitution of a functioning immune system generally die of overwhelming infection by one year of age.

T cell receptor excision circles (TRECs) as a biomarker of naïve T cells, is a sensitive and specific, as well as cost effective, method for SCID newborn screening.[8]

Natural History, Complications, and Prognosis

Natural History

Patients with severe combined immunodeficiency (SCID) may present with multiple recurrent severe infections, chronic diarrhea, and failure to thrive (FTT) In the past, SCID was often diagnosed after children acquired serious infections, such as pneumonia due to Pneumocystis jiroveci . [9]

Complications

Patients are at risk for infections from opportunistic infections usually follow more common infections. P. jiroveci and fungal pneumonias cause death in classic cases. CMV, VZV, and HSV infections typically occur in infants who have already had treatable infections. Neurologic compromise from polio and other enteroviruses impedes stem cell reconstitution.

Prognosis

SCID is fatal, generally within the first year of life, unless the underlying defect is corrected.Early diagnosis through population-wide newborn screening and early transplantation in the absence of infectious complications may improve hematopoietic cell transplantation (HCT) outcomes. Among patients transplanted under 3.5 months of age without infection, survival post-transplant is about 95 percent, and overall survival is 90 percent. [10]

Diagnosis

Diagnostic Criteria

The diagnosis of SCID is made when patient is less than two years of age with either an absolute CD3 T cell count of less than 300/mm3, or an absolute CD3 T cell count of greater than 300/mm3 with absent naïve CD3/CD45RA T cells, at least one of the following diagnostic criteria are met:[11]

  1. Male with deleterious mutation in the X-linked IL2RG gene encoding the cytokine receptor common gamma chain (gamma-c).
  2. Male or female patient with deleterious homozygous or compound heterozygous mutations in any of the genes listed in the Gene Defects table other than IL2RG.
  3. ADA activity of less than 2% of control or mutations in both alleles of the ADA gene.
  4. Engraftment of transplacentally acquired maternal T cells.

History and Symptoms

Clinically, most patients present before age 3 months. The diagnosis of SCID should be suspected in children with any of the following:

  • Positive newborn screening result for SCID
  • Unexplained lymphopenia
  • Recurrent fevers
  • Failure to thrive (FTT)
  • Chronic diarrhea
  • Recurrence of severe episodes of thrush, mouth ulcers, respiratory syncytial virus (RSV), herpes simplex virus (HSV), varicella zoster virus (VZV), measles, influenza, or parainfluenza 3
  • Adverse reactions (infections) caused by live vaccines, such as Bacillus Calmette-Guérin (BCG), rotavirus vaccine, or varicella vaccine
  • A family history of SCID (seen in <20 percent of cases)

Physical Examination

Physical findings are multisystemic. The patient may present with the following:

  • Fever
  • Failure to thrive
  • Dehydration due to chronic diarrhea
  • Acute otitis media
  • Absent lymphatic tissue
  • Extensive candidiasis in the mouth and diaper area
  • Recurrent skin abscesses and/or other severe skin infections

Laboratory Findings

Lymphopenia is the typical hallmark of severe combined immunodeficiency (SCID). Although, normal or even elevated lymphocyte counts may be observed in a remarkable number of patients. which makes the diagnosis a challenge especially in patients with Omenn syndrome, bare lymphocyte syndrome, and interleukin (IL)–2 deficiency. Obtaining lymphocyte subpopulations as determined by flow cytometry and evaluation of T cell proliferative responses to mitogens are laboratory findings which can help to diagnose among patients lymphopenia is not frankly detected.

The classic laboratory findings in SCID include low to absent T cell count and function, as evaluated by T cell enumeration by flow cytometry and T cell proliferation to mitogens such as phytohemagglutinin (PHA) and concanavalin A (ConA). [12]

Laboratory findings necessary to confirm the diagnosis and used for diagnostic criteria include an absolute CD3+ T cell count of <300 cells/microL and/or maternal T cells in the circulation.

Imaging Findings

A chest x-ray may be helpful in the diagnosis of SCID. The thymic shadow is absent on chest radiography among the majority of patients with SCID, thus, a chest x-ray may be helpful in the newborn suspected of SCID. In addition, obtaining a chest x-ray may be helpful to assess pneumonia secondary to SCID.

Other Diagnostic Studies

Detection of maternal T cell engraftment : Since normal or even elevated lymphocyte counts may be observed in a remarkable number of patients, then such patients should be evaluated for maternal T cell engraftment. In some patients with SCID, maternal T cells which cross the placenta and enter the circulation of a fetus engraft subsequently may expand to levels >8000 cells/microL, that causes the total T cell count to appear incorrectly normal.[13] A majority of the maternally engrafted T cells express CD45RO while normal infant T cells are predominantly naïve and express CD45RA. These surface markers can be enumerated by flow cytometry.[14]

Treatment

Medical Therapy

The mainstay of treatment for all forms of SCID is hematopoietic cell transplantation (HCT). The majority of cases of adenosine deaminase deficiency require enzyme replacement therapy (polyethylene glycol-adenosine deaminase [PEG-ADA]) or gene therapy, Gene therapy is also becoming an alternative for X-linked SCID (common gamma-chain deficiency) and other genetic forms of SCID.

Viral infections are a leading cause of death in patients with SCID, both before and in the first several months after HCT before T cell engraftment has occurred. The most commonly implicated viruses are CMV, EBV, and adenovirus. Pharmacologic treatment and prophylactic options for viral infections remain limited and often ineffective, with associated morbidities notably from acute kidney injury and myelosuppression. Treatment may also generate resistance, and does not confer extended protection leaving patients at risk for viral reactivation.[15] Adoptive immunotherapy with virus-specific T cells (VST) can be used along with antiviral agents to treat these life-threatening viral infections.[16]

Primary Prevention

  • There are no established measures for the primary prevention of SCID.

Secondary Prevention

Effective measures for the secondary prevention of SCID include:[17]

Typical prophylaxis against infection includes:

External links

  • Learning About Severe Combined Immunodeficiency (SCID) NIH
  • Buckley RH (2004). "Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution". Annu Rev Immunol. 22: 625–55. doi:10.1146/annurev.immunol.22.012703.104614. PMID 15032591.
  • Chinen J, Puck JM (2004). "Successes and risks of gene therapy in primary immunodeficiencies". J Allergy Clin Immunol. 113 (4): 595–603, quiz 604. doi:10.1016/j.jaci.2004.01.765. PMID 15100660.
  • Church AC (2002). "X-linked severe combined immunodeficiency". Hosp Med. 63 (11): 676–80. PMID 12474613.
  • Gennery AR, Cant AJ (2001). "Diagnosis of severe combined immunodeficiency". J Clin Pathol. 54 (3): 191–5. doi:10.1136/jcp.54.3.191. PMID 11253129.
  • Concept of gene therapy for SCID

References

  1. Glanzmann E, Riniker P: Essential lymphocytophthisis; new clinical aspect of infant pathology. Ann Paediatr Jul-Aug 175 (1-2), 1-32.5 (1950)
  2. E. R. Giblett, J. E. Anderson, F. Cohen, B. Pollara & H. J. Meuwissen (1972). "Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity". Lancet (London, England). 2 (7786): 1067–1069. PMID 4117384. Unknown parameter |month= ignored (help)
  3. M. Noguchi, H. Yi, H. M. Rosenblatt, A. H. Filipovich, S. Adelstein, W. S. Modi, O. W. McBride & W. J. Leonard (1993). "Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans". Cell. 73 (1): 147–157. PMID 8462096. Unknown parameter |month= ignored (help)
  4. Buckley, Rebecca H.; Schiff, Richard I.; Schiff, Sherrie E.; Markert, M.Louise; Williams, Larry W.; Harville, Terry O.; Roberts, Joseph L.; Puck, Jennifer M. (1997). "Human severe combined immunodeficiency: Genetic, phenotypic, and functional diversity in one hundred eight infants". The Journal of Pediatrics. 130 (3): 378–387. doi:10.1016/S0022-3476(97)70199-9. ISSN 0022-3476.
  5. Antonia Kwan, Roshini S. Abraham, Robert Currier, Amy Brower, Karen Andruszewski, Jordan K. Abbott, Mei Baker, Mark Ballow, Louis E. Bartoshesky, Francisco A. Bonilla, Charles Brokopp, Edward Brooks, Michele Caggana, Jocelyn Celestin, Joseph A. Church, Anne Marie Comeau, James A. Connelly, Morton J. Cowan, Charlotte Cunningham-Rundles, Trivikram Dasu, Nina Dave, Maria T. De La Morena, Ulrich Duffner, Chin-To Fong, Lisa Forbes, Debra Freedenberg, Erwin W. Gelfand, Jaime E. Hale, I. Celine Hanson, Beverly N. Hay, Diana Hu, Anthony Infante, Daisy Johnson, Neena Kapoor, Denise M. Kay, Donald B. Kohn, Rachel Lee, Heather Lehman, Zhili Lin, Fred Lorey, Aly Abdel-Mageed, Adrienne Manning, Sean McGhee, Theodore B. Moore, Stanley J. Naides, Luigi D. Notarangelo, Jordan S. Orange, Sung-Yun Pai, Matthew Porteus, Ray Rodriguez, Neil Romberg, John Routes, Mary Ruehle, Arye Rubenstein, Carlos A. Saavedra-Matiz, Ginger Scott, Patricia M. Scott, Elizabeth Secord, Christine Seroogy, William T. Shearer, Subhadra Siegel, Stacy K. Silvers, E. Richard Stiehm, Robert W. Sugerman, John L. Sullivan, Susan Tanksley, Millard L. 4th Tierce, James Verbsky, Beth Vogel, Rosalyn Walker, Kelly Walkovich, Jolan E. Walter, Richard L. Wasserman, Michael S. Watson, Geoffrey A. Weinberg, Leonard B. Weiner, Heather Wood, Anne B. Yates, Jennifer M. Puck & Vincent R. Bonagura (2014). "Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States". JAMA. 312 (7): 729–738. doi:10.1001/jama.2014.9132. PMID 25138334. Unknown parameter |month= ignored (help)
  6. Waleed Al-Herz & Hamoud Al-Mousa (2013). "Combined immunodeficiency: the Middle East experience". The Journal of allergy and clinical immunology. 131 (3): 658–660. doi:10.1016/j.jaci.2012.11.033. PMID 23321211. Unknown parameter |month= ignored (help)
  7. Waleed Al-Herz & Hamoud Al-Mousa (2013). "Combined immunodeficiency: the Middle East experience". The Journal of allergy and clinical immunology. 131 (3): 658–660. doi:10.1016/j.jaci.2012.11.033. PMID 23321211. Unknown parameter |month= ignored (help)
  8. Kee Chan & Jennifer M. Puck (2005). "Development of population-based newborn screening for severe combined immunodeficiency". The Journal of allergy and clinical immunology. 115 (2): 391–398. doi:10.1016/j.jaci.2004.10.012. PMID 15696101. Unknown parameter |month= ignored (help)
  9. Linda M. Griffith, Morton J. Cowan, Luigi D. Notarangelo, Jennifer M. Puck, Rebecca H. Buckley, Fabio Candotti, Mary Ellen Conley, Thomas A. Fleisher, H. Bobby Gaspar, Donald B. Kohn, Hans D. Ochs, Richard J. O'Reilly, J. Douglas Rizzo, Chaim M. Roifman, Trudy N. Small & William T. Shearer (2009). "Improving cellular therapy for primary immune deficiency diseases: recognition, diagnosis, and management". The Journal of allergy and clinical immunology. 124 (6): 1152–1160. doi:10.1016/j.jaci.2009.10.022. PMID 20004776. Unknown parameter |month= ignored (help)
  10. Jennifer Heimall, Brent R. Logan, Morton J. Cowan, Luigi D. Notarangelo, Linda M. Griffith, Jennifer M. Puck, Donald B. Kohn, Michael A. Pulsipher, Suhag Parikh, Caridad Martinez, Neena Kapoor, Richard O'Reilly, Michael Boyer, Sung-Yun Pai, Frederick Goldman, Lauri Burroughs, Sharat Chandra, Morris Kletzel, Monica Thakar, James Connelly, Geoff Cuvelier, Blachy J. Davila Saldana, Evan Shereck, Alan Knutsen, Kathleen E. Sullivan, Kenneth DeSantes, Alfred Gillio, Elie Haddad, Aleksandra Petrovic, Troy Quigg, Angela R. Smith, Elizabeth Stenger, Ziyan Yin, William T. Shearer, Thomas Fleisher, Rebecca H. Buckley & Christopher C. Dvorak (2017). "Immune reconstitution and survival of 100 SCID patients post-hematopoietic cell transplant: a PIDTC natural history study". Blood. 130 (25): 2718–2727. doi:10.1182/blood-2017-05-781849. PMID 29021228. Unknown parameter |month= ignored (help)
  11. Capucine Picard, Waleed Al-Herz, Aziz Bousfiha, Jean-Laurent Casanova, Talal Chatila, Mary Ellen Conley, Charlotte Cunningham-Rundles, Amos Etzioni, Steven M. Holland, Christoph Klein, Shigeaki Nonoyama, Hans D. Ochs, Eric Oksenhendler, Jennifer M. Puck, Kathleen E. Sullivan, Mimi L. K. Tang, Jose Luis Franco & H. Bobby Gaspar (2015). "Primary Immunodeficiency Diseases: an Update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015". Journal of clinical immunology. 35 (8): 696–726. doi:10.1007/s10875-015-0201-1. PMID 26482257. Unknown parameter |month= ignored (help)
  12. Brian T. Kelly, Jonathan S. Tam, James W. Verbsky & John M. Routes (2013). "Screening for severe combined immunodeficiency in neonates". Clinical epidemiology. 5: 363–369. doi:10.2147/CLEP.S48890. PMID 24068875.
  13. S. M. Muller, M. Ege, A. Pottharst, A. S. Schulz, K. Schwarz & W. Friedrich (2001). "Transplacentally acquired maternal T lymphocytes in severe combined immunodeficiency: a study of 121 patients". Blood. 98 (6): 1847–1851. PMID 11535520. Unknown parameter |month= ignored (help)
  14. Stephen C. Jameson & David Masopust (2009). "Diversity in T cell memory: an embarrassment of riches". Immunity. 31 (6): 859–871. doi:10.1016/j.immuni.2009.11.007. PMID 20064446. Unknown parameter |month= ignored (help)
  15. Marcie Tomblyn, Tom Chiller, Hermann Einsele, Ronald Gress, Kent Sepkowitz, Jan Storek, John R. Wingard, Jo-Anne H. Young & Michael J. Boeckh (2009). "Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective". Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation. 15 (10): 1143–1238. doi:10.1016/j.bbmt.2009.06.019. PMID 19747629. Unknown parameter |month= ignored (help)
  16. Amy Houghtelin & Catherine M. Bollard (2017). "Virus-Specific T Cells for the Immunocompromised Patient". Frontiers in immunology. 8: 1272. doi:10.3389/fimmu.2017.01272. PMID 29075259.
  17. Linda M. Griffith, Morton J. Cowan, Luigi D. Notarangelo, Jennifer M. Puck, Rebecca H. Buckley, Fabio Candotti, Mary Ellen Conley, Thomas A. Fleisher, H. Bobby Gaspar, Donald B. Kohn, Hans D. Ochs, Richard J. O'Reilly, J. Douglas Rizzo, Chaim M. Roifman, Trudy N. Small & William T. Shearer (2009). "Improving cellular therapy for primary immune deficiency diseases: recognition, diagnosis, and management". The Journal of allergy and clinical immunology. 124 (6): 1152–1160. doi:10.1016/j.jaci.2009.10.022. PMID 20004776. Unknown parameter |month= ignored (help)

Template:DNA repair-deficiency disorder