Scoliosis other diagnostic studies

Revision as of 19:58, 6 December 2018 by Rohan Bhimani (talk | contribs)
Jump to navigation Jump to search

Scoliosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Scoliosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Electrocardiogram

X-Ray

Echocardiography or Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Scoliosis other diagnostic studies On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Scoliosis other diagnostic studies

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Scoliosis other diagnostic studies

CDC on Scoliosis other diagnostic studies

Scoliosis other diagnostic studies in the news

Blogs on Scoliosis other diagnostic studies

Directions to Hospitals Treating Scoliosis

Risk calculators and risk factors for Scoliosis other diagnostic studies

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Rohan A. Bhimani, M.B.B.S., D.N.B., M.Ch.[2]

Overview

Electromyography, nerve conduction velocity, pulmonary function studies, peak height velocity, and computerized photogrammetry may be helpful in the diagnosis of scoliosis.

Other Diagnostic Studies

Other diagnostic studies for scoliosis include electromyography (EMG), nerve conduction velocity (NCV), pulmonary function test (PFT), peak height velocity, and computerized photogrammetry.

Electromyography(EMG)

  • In literature, it has been demonstrated that changes in the EMG activity of the paraspinal muscles during the development and progression of the scoliotic curve.[1][2][3][4][5]
  • EMG of the paraspinal muscles are of value for predicting the progression in idiopathic scoliosis.
  • Increased EMG activity has been noted on the convex side of the scoliotic curve.
  • Higher amplitude of Motor unit Action potential (MUP) on the convexity side was the most prominent abnormal findings in our adolescent idiopathic scoliosis (AIS) patients.
  • The amplitude of MUPs correlates to the degree of scoliosis with no significant effect on progression of AIS curve according to the Cobb angle.


References

  1. Bos RR, Boering G, Rozema FR, Leenslag JW (1987). "Resorbable poly(L-lactide) plates and screws for the fixation of zygomatic fractures". J Oral Maxillofac Surg. 45 (9): 751–3. PMID 3476698.
  2. de Oliveira AS, Gianini PE, Camarini PM, Bevilaqua-Grossi D (2011). "Electromyographic analysis of paravertebral muscles in patients with idiopathic scoliosis". Spine (Phila Pa 1976). 36 (5): E334–9. doi:10.1097/BRS.0b013e3181f516cd. PMID 21325929.
  3. Zetterberg C, Björk R, Ortengren R, Andersson GB (1984). "Electromyography of the paravertebral muscles in idiopathic scoliosis. Measurements of amplitude and spectral changes under load". Acta Orthop Scand. 55 (3): 304–9. PMID 6741480.
  4. Cheung J, Veldhuizen AG, Halbertsma JP, Maurits NM, Sluiter WJ, Cool JC; et al. (2004). "The relation between electromyography and growth velocity of the spine in the evaluation of curve progression in idiopathic scoliosis". Spine (Phila Pa 1976). 29 (9): 1011–6. PMID 15105674.
  5. Farahpour N, Ghasemi S, Allard P, Saba MS (2014). "Electromyographic responses of erector spinae and lower limb's muscles to dynamic postural perturbations in patients with adolescent idiopathic scoliosis". J Electromyogr Kinesiol. 24 (5): 645–51. doi:10.1016/j.jelekin.2014.05.014. PMID 25008019.

Template:WH Template:WS