Patent foramen ovale echocardiography and ultrasound
Patent Foramen Ovale Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Patent foramen ovale echocardiography and ultrasound On the Web |
American Roentgen Ray Society Images of Patent foramen ovale echocardiography and ultrasound |
Patent foramen ovale echocardiography and ultrasound in the news |
Blogs on Patent foramen ovale echocardiography and ultrasound |
Risk calculators and risk factors for Patent foramen ovale echocardiography and ultrasound |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1];
Overview
Echocardiography/Ultrasound
- When diagnosing patent foramen ovale, several echocardiographic techniques can be used, including transthoracic echocardiography (TTE), transesophageal echocardiography (TEE), and transcranial doppler ultrasonography. They all require the use of a contrast, commonly saline solution.[1]
- The process of detecting a right-to-left shunt across a PFO involves the patient performing the valsalva maneuver while injected with a saline contrast medium. During the strain phase of the maneuver, the saline medium is injected into a peripheral vein and the atrial septum is visualized during the release phase of the maneuver. Injecting the contrast through an upper extremity vein may lead to it being washed away by contrast-free blood flow from the inferior vena cava directed by the eustachian valve, thereby creating a false-negative result.[2][3]
- Findings on an echocardiography suggestive of/diagnostic of a right-to-left shunt include:[2][4][5]
- Presence of bubbles across the inter-atrial septum into the left atrium: A diagnosis is made with the appearance of at least three micro-bubbles within three cardiac cycles after the complete opacification of the right atrium.
- 3 - 10 bubbles: Small shunt
- 10 - 20 bubbles: Medium shunt
- >20 bubbles: Large shunt
Transesophageal Echocardiography
- Transesophageal echocardiography is the gold standard for diagnosis. It has a superior image resolution and the ability to identify the origin of a right-to-left shunt. It is the study of choice in patients suspected to have a paradoxical embolus.[6][2][1]
- It is important in monitoring proper percutaneous patent foramen ovale closure.[1]
- Although tranesopheageal echocardiography is preferred, sedating the patient may cause difficulty in performing the valsalva maneuver which may lead to an increased number of false-positives.[2][1]
- A transesophageal echocardiogram can be performed to search for the precise anatomy of a patent foramen ovale after positive transthoracic echocardiogram and/or transcranial doppler. This is particularly useful before scheduling a patient for percutaneous closure. On the other hand, no further studies should be done after a negative transthoracic echocardiogram and/or transcranial doppler.[1]
Transthoracic Echocardiography
- It is the most commonly used screening test for diagnosing a right-to-left shunt. It has a sensitivity of 46% and a specificity of 99%.[7]
- Findings on an transthoracic echocardiography suggestive of/diagnostic of patent foramen ovale include:[8]
- Hypermobility of the inter-atrial septum (atrial septal aneurysm).
- Color flow Doppler findings of left–right or bi-directional flow across the atrial septum.
- A standard TTE should precede a contrast-enhanced TEE in a workup for cryptogenic shock. It is limited in its ability to reveal information about aortic sources of emboli and it has a low sensitivity in small shunts. Therefore, if the suspicion is high after a negative study result or inadequate images, a contrast-enhanced TEE should be done to check for the presence of a thrombus in the the atrial appendage, cardiac masses, aortic atheroma, and vegetations that the TTE may have missed. If TTE study reveals a right-to-left shunt, a TEE is required to expound on the anatomy of the atrial septum, to assess its need for device closure, and to confirm that the shunt is due to a patent forman ovale.[1]
- It is a very specific technique that has the ability to detect a large right-to-left shunt.[9]
Transcranial Doppler Ultrasonography
- It is a reliable and non-invasive test useful for cryptogenic stroke work-up and consideration for patent foramen ovale closure.[1]
- It can be used as an alternative to contrast enhanced transesophageal echocardiography in recognizing a right-to-left shunt because of its excellent diagnostic accuracies.[10]
- It is more sensitive than TEE but it is limited in the ability to detect structural features and features that affect the characterization of shunts.[5]
- From a meta-analysis, transcranial doppler had a mean sensitivity and specificity of 97% and 93%, respectively.[10]
- The overlap in time that occurs when microbubbles are detected in the middle cerebral artery makes it difficult to discriminate between atrial and pulmonary shunts.[1]
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Falanga G, Carerj S, Oreto G, Khandheria BK, Zito C (2014). "How to Understand Patent Foramen Ovale Clinical Significance: Part I." J Cardiovasc Echogr. 24 (4): 114–121. doi:10.4103/2211-4122.147202. PMC 5353567. PMID 28465918.
- ↑ 2.0 2.1 2.2 2.3 Pinto FJ (2005). "When and how to diagnose patent foramen ovale". Heart. 91 (4): 438–40. doi:10.1136/hrt.2004.052233. PMC 1768819. PMID 15772190.
- ↑ Kutty, Shelby; Sengupta, Partho P.; Khandheria, Bijoy K. (2012). "Patent Foramen Ovale". Journal of the American College of Cardiology. 59 (19): 1665–1671. doi:10.1016/j.jacc.2011.09.085. ISSN 0735-1097.
- ↑ Mas, Jean-Louis; Arquizan, Caroline; Lamy, Catherine; Zuber, Mathieu; Cabanes, Laure; Derumeaux, Geneviève; Coste, Joël (2001). "Recurrent Cerebrovascular Events Associated with Patent Foramen Ovale, Atrial Septal Aneurysm, or Both". New England Journal of Medicine. 345 (24): 1740–1746. doi:10.1056/NEJMoa011503. ISSN 0028-4793.
- ↑ 5.0 5.1 Yuan, Kristy; Kasner, Scott Eric (2018). "Patent foramen ovale and cryptogenic stroke: diagnosis and updates in secondary stroke prevention". Stroke and Vascular Neurology. 3 (2): 84–91. doi:10.1136/svn-2018-000173. ISSN 2059-8688.
- ↑ Pearson AC, Labovitz AJ, Tatineni S, Gomez CR (1991). "Superiority of transesophageal echocardiography in detecting cardiac source of embolism in patients with cerebral ischemia of uncertain etiology". J Am Coll Cardiol. 17 (1): 66–72. doi:10.1016/0735-1097(91)90705-e. PMID 1987242.
- ↑ Mojadidi MK, Winoker JS, Roberts SC, Msaouel P, Zaman MO, Gevorgyan R; et al. (2014). "Accuracy of conventional transthoracic echocardiography for the diagnosis of intracardiac right-to-left shunt: a meta-analysis of prospective studies". Echocardiography. 31 (9): 1036–48. doi:10.1111/echo.12583. PMID 24689727.
- ↑ Gafoor, Sameer; Sharma, Rahul; Zhang, Ming; Casterella, Peter; Atianzar, Kimberly (2017). "Update on the Management of Patent Foramen Ovale in 2017: Indication for Closure and Literature Review". US Cardiology Review. 11 (2): 75. doi:10.15420/usc.2017:18:1. ISSN 1758-3896.
- ↑ Zito C, Dattilo G, Oreto G, Di Bella G, Lamari A, Iudicello R; et al. (2009). "Patent foramen ovale: comparison among diagnostic strategies in cryptogenic stroke and migraine". Echocardiography. 26 (5): 495–503. doi:10.1111/j.1540-8175.2008.00852.x. PMID 19452605.
- ↑ 10.0 10.1 Mojadidi MK, Roberts SC, Winoker JS, Romero J, Goodman-Meza D, Gevorgyan R; et al. (2014). "Accuracy of transcranial Doppler for the diagnosis of intracardiac right-to-left shunt: a bivariate meta-analysis of prospective studies". JACC Cardiovasc Imaging. 7 (3): 236–50. doi:10.1016/j.jcmg.2013.12.011. PMID 24560213.