Sandbox:Shakiba

Jump to navigation Jump to search

Associate Editor(s)-in-Chief: Shakiba Hassanzadeh, MD[1]

Overview

COVID-19-Associated Hematologic Findings

Pathophysiology and Causes

Epidemiology

  • Leukocytosis is seen in 11.4% of patients with severe COVID-19 infection compared to 4.8% of patients with non-severe infection.[3][4]
  • Increase in CRP is seen in 81.5% of patients with severe COVID-19 infection compared to 56.4% of patients with non-severe infection.[3][4]
  • Increase in procalcitonin is seen in 13.7% of patients with severe COVID-19 infection compared to 3.7% of patients with non-severe infection.[3][4]
  • Increase in AST is seen in 39.4% of patients with severe COVID-19 infection compared to 18.2% of patients with non-severe infection.[3][4]
  • Increase in ALT is seen in 28.1% of patients with severe COVID-19 infection compared to 19.8% of patients with non-severe infection.[3][4]
  • Increase in LDH is seen in 58.1% of patients with severe COVID-19 infection compared to 37.2% of patients with non-severe infection.[3][4]
  • MDW was found to be increased in all patients with COVID-19 infection, particularly in those with the worst conditions.[4]
  • Increase in total bilirubin is seen in 13.3% of patients with severe COVID-19 infection compared to 9.9% of patients with non-severe infection.[3][4]
  • Increase in creatinine is seen in 4.3% of patients with severe COVID-19 infection compared to 1% of patients with non-severe infection.[3][4]
  • Thrombocytosis has been reported in 4% of patients with COVID-19 infection.[5]

Clinical Significance

Laboratory findings in COVID-19 infection may indicate clinical abnormalities, including:

  • In patients with COVID-19 infection, leukocytosis may be an indication of a bacterial infection or superinfection.[4]
  • In patients with COVID-19 infection, increase in CRP may be an indication of severe viral infection or sepsis and viremia.[4]
  • In patients with COVID-19 infection, increase in procalcitonin may be an indication of bacterial infection or superinfection.[4]
  • There have been different reports regarding the association of increase in ferritin with death in COVID-19 infection; for example, there has been a report that increase in ferritin is associated with acute respiratory distress syndrome (ARDS) but not death[6], while another one reports an association between increase in ferritin and death in COVID-19 infection[7]
  • In patients with COVID-19 infection, increase in aminotransferases may indicate injury to the liver or multi-system damage.[4]
  • In patients with COVID-19 infection, increase in aminotransferases may indicate injury to the liver or multi-system damage.[4]
  • In patients with COVID-19 infection, increase in LDH may indicate injury to the lungs or multi-system damage.[4]
  • In patients with COVID-19 infection, increase in total bilirubin may indicate injury to the liver.[4]
  • In patients with COVID-19 infection, increase in creatinine may indicate injury to the kidneys.[4]
  • In patients with COVID-19 infection, increase in cardiac troponins may indicate cardiac injury.[4]
  • In patients with COVID-19 infection, decrease in albumin may indicate liver function abnormality.[4]
  • Increase in IL-6 has been reported to be associated with death in COVID-19 infection.[6]


References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Frater JL, Zini G, d'Onofrio G, Rogers HJ (2020). "COVID-19 and the clinical hematology laboratory". Int J Lab Hematol. 42 Suppl 1: 11–18. doi:10.1111/ijlh.13229. PMC 7264622 Check |pmc= value (help). PMID 32311826 Check |pmid= value (help).
  2. Meisner M (2014). "Update on procalcitonin measurements". Ann Lab Med. 34 (4): 263–73. doi:10.3343/alm.2014.34.4.263. PMC 4071182. PMID 24982830.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Invalid <ref> tag; no text was provided for refs named pmid32109013
  4. 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 Lippi G, Plebani M (2020). "The critical role of laboratory medicine during coronavirus disease 2019 (COVID-19) and other viral outbreaks". Clin Chem Lab Med. 58 (7): 1063–1069. doi:10.1515/cclm-2020-0240. PMID 32191623 Check |pmid= value (help).
  5. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y; et al. (2020). "Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study". Lancet. 395 (10223): 507–513. doi:10.1016/S0140-6736(20)30211-7. PMC 7135076 Check |pmc= value (help). PMID 32007143 Check |pmid= value (help).
  6. 6.0 6.1 Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S; et al. (2020). "Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China". JAMA Intern Med. doi:10.1001/jamainternmed.2020.0994. PMC 7070509 Check |pmc= value (help). PMID 32167524 Check |pmid= value (help).
  7. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z; et al. (2020). "Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study". Lancet. 395 (10229): 1054–1062. doi:10.1016/S0140-6736(20)30566-3. PMC 7270627 Check |pmc= value (help). PMID 32171076 Check |pmid= value (help).


Template:WikiDoc Sources