COVID-19-associated stress cardiomyopathy

Revision as of 14:34, 16 July 2020 by Jose Loyola (talk | contribs)
Jump to navigation Jump to search

WikiDoc Resources for COVID-19-associated stress cardiomyopathy

Articles

Most recent articles on COVID-19-associated stress cardiomyopathy

Most cited articles on COVID-19-associated stress cardiomyopathy

Review articles on COVID-19-associated stress cardiomyopathy

Articles on COVID-19-associated stress cardiomyopathy in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on COVID-19-associated stress cardiomyopathy

Images of COVID-19-associated stress cardiomyopathy

Photos of COVID-19-associated stress cardiomyopathy

Podcasts & MP3s on COVID-19-associated stress cardiomyopathy

Videos on COVID-19-associated stress cardiomyopathy

Evidence Based Medicine

Cochrane Collaboration on COVID-19-associated stress cardiomyopathy

Bandolier on COVID-19-associated stress cardiomyopathy

TRIP on COVID-19-associated stress cardiomyopathy

Clinical Trials

Ongoing Trials on COVID-19-associated stress cardiomyopathy at Clinical Trials.gov

Trial results on COVID-19-associated stress cardiomyopathy

Clinical Trials on COVID-19-associated stress cardiomyopathy at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on COVID-19-associated stress cardiomyopathy

NICE Guidance on COVID-19-associated stress cardiomyopathy

NHS PRODIGY Guidance

FDA on COVID-19-associated stress cardiomyopathy

CDC on COVID-19-associated stress cardiomyopathy

Books

Books on COVID-19-associated stress cardiomyopathy

News

COVID-19-associated stress cardiomyopathy in the news

Be alerted to news on COVID-19-associated stress cardiomyopathy

News trends on COVID-19-associated stress cardiomyopathy

Commentary

Blogs on COVID-19-associated stress cardiomyopathy

Definitions

Definitions of COVID-19-associated stress cardiomyopathy

Patient Resources / Community

Patient resources on COVID-19-associated stress cardiomyopathy

Discussion groups on COVID-19-associated stress cardiomyopathy

Patient Handouts on COVID-19-associated stress cardiomyopathy

Directions to Hospitals Treating COVID-19-associated stress cardiomyopathy

Risk calculators and risk factors for COVID-19-associated stress cardiomyopathy

Healthcare Provider Resources

Symptoms of COVID-19-associated stress cardiomyopathy

Causes & Risk Factors for COVID-19-associated stress cardiomyopathy

Diagnostic studies for COVID-19-associated stress cardiomyopathy

Treatment of COVID-19-associated stress cardiomyopathy

Continuing Medical Education (CME)

CME Programs on COVID-19-associated stress cardiomyopathy

International

COVID-19-associated stress cardiomyopathy en Espanol

COVID-19-associated stress cardiomyopathy en Francais

Business

COVID-19-associated stress cardiomyopathy in the Marketplace

Patents on COVID-19-associated stress cardiomyopathy

Experimental / Informatics

List of terms related to COVID-19-associated stress cardiomyopathy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: José Eduardo Riceto Loyola Junior, M.D.[2]

Synonyms and keywords:

Overview

Historical Perspective

  • COVID-19-associated stress cardiomyopathy was first described by Elena Roca, an Italian physician, in April 2020.[1]

Classification

  • There is no established system for the classification of COVID-19-associated stress cardiomyopathy.

Pathophysiology

  • It is thought that COVID-19-associated stress cardiomyopathy is the result of extreme sympathetic stimulation due to abnormal release of catecholamines causing epicardial coronary vasospasm.
  • Many mechanisms occurring in COVID-19 patients may lead to myocardial injury and left ventricular dysfunction.[2]
  • One of the proposed theory is that patients may experience stress-induced adrenergic discharge as consequence of fever and inflammatory response to infection. One other factor to consider is the direct SARS-CoV-2 injury causing endothelial dysfunction, which may cause microvascular vasoconstriction that can manifest in a transient left ventricular apical dysfunction, (apical ballooning).[3]
  • Proposed mechanisms that have the potential to cause myocardial injury in acute coronavirus disease 2019 cardiovascular syndrome:[4]
 
 
 
 
 
 
 
 
 
 
 
 
 
Stress Induced Cardiomyopathy
 
 
 
 
 
 
 
 
 
 
 
Microvascular/Thrombotic Injury
 
 
 
 
 
 
 
 
Cytokine Storm
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pre-existing CV Disease
 
 
 
 
 
Acute Myocardial Injury Characterized by Abnormal Troponin
 
 
 
 
 
Viral Myocarditis
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hypoxemia
 
 
 
 
 
 
 
 
Hypotension +/- Shock
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ventricular or Atrial Arrhythmias
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Causes

  • COVID-19-associated stress cardiomyopathy may be caused by a very intense sympathetic stimulation which is theorized to be caused either due to direct viral action or the ongoing psychological, economical and social effects (physical distancing rules, lack of social interaction) of the pandemic due to the imposed quarantine.[3]

Differentiating COVID-19-associated stress cardiomyopathy from other Diseases

  • COVID-19-associated stress cardiomyopathy must be differentiated from other diseases that cause left ventricular dysfunction such as acute myocardial infarction (STEMI and NSTEMI) and viral myocarditis.

Epidemiology and Demographics

  • The incidence of COVID-19-associated stress cardiomyopathy is approximately 7.8% of all patients presenting acute coronary syndrome.[3]
  • In comparison, the stress cardiomyopathy incidence in the pre-COVID-19 period was varying between 1.5-1.8%.[3]

Risk Factors

  • There are no established risk factors for COVID-19-associated stress cardiomyopathy.
  • Hypertension was, however, the most frequently comorbidity found across the groups in the COVID-19 period patients, as was hyperlipidemia.[3]

Screening

  • There is insufficient evidence to recommend routine screening for COVID-19-associated stress cardiomyopathy.

Natural History, Complications, and Prognosis

If left untreated, [#]% of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].

OR

Common complications of [disease name] include [complication 1], [complication 2], and [complication 3].

OR

Prognosis is generally excellent/good/poor, and the 1/5/10-year mortality/survival rate of patients with [disease name] is approximately [#]%.

Diagnosis

Diagnostic Study of Choice

The diagnosis of [disease name] is made when at least [number] of the following [number] diagnostic criteria are met: [criterion 1], [criterion 2], [criterion 3], and [criterion 4].

OR

The diagnosis of [disease name] is based on the [criteria name] criteria, which include [criterion 1], [criterion 2], and [criterion 3].

OR

The diagnosis of [disease name] is based on the [definition name] definition, which includes [criterion 1], [criterion 2], and [criterion 3].

OR

There are no established criteria for the diagnosis of [disease name].

History and Symptoms

The majority of patients with [disease name] are asymptomatic.

OR

The hallmark of [disease name] is [finding]. A positive history of [finding 1] and [finding 2] is suggestive of [disease name]. The most common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3]. Common symptoms of [disease] include [symptom 1], [symptom 2], and [symptom 3]. Less common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3].

Physical Examination

Patients with [disease name] usually appear [general appearance]. Physical examination of patients with [disease name] is usually remarkable for [finding 1], [finding 2], and [finding 3].

OR

Common physical examination findings of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

The presence of [finding(s)] on physical examination is diagnostic of [disease name].

OR

The presence of [finding(s)] on physical examination is highly suggestive of [disease name].

Laboratory Findings

  • Laboratory findings consistent with the diagnosis of COVID-19-associated stress cardiomyopathy include elevated troponin and Pro-BNP.[3]

Electrocardiogram

There are no ECG findings associated with [disease name].

OR

An ECG may be helpful in the diagnosis of [disease name]. Findings on an ECG suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

X-ray

There are no x-ray findings associated with [disease name].

OR

An x-ray may be helpful in the diagnosis of [disease name]. Findings on an x-ray suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no x-ray findings associated with [disease name]. However, an x-ray may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

Echocardiography or Ultrasound

There are no echocardiography/ultrasound findings associated with [disease name].

OR

Echocardiography/ultrasound may be helpful in the diagnosis of [disease name]. Findings on an echocardiography/ultrasound suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no echocardiography/ultrasound findings associated with [disease name]. However, an echocardiography/ultrasound may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

CT scan

There are no CT scan findings associated with [disease name].

OR

[Location] CT scan may be helpful in the diagnosis of [disease name]. Findings on CT scan suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no CT scan findings associated with [disease name]. However, a CT scan may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

MRI

There are no MRI findings associated with [disease name].

OR

[Location] MRI may be helpful in the diagnosis of [disease name]. Findings on MRI suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no MRI findings associated with [disease name]. However, a MRI may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

Other Imaging Findings

There are no other imaging findings associated with [disease name].

OR

[Imaging modality] may be helpful in the diagnosis of [disease name]. Findings on an [imaging modality] suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

Other Diagnostic Studies

There are no other diagnostic studies associated with [disease name].

OR

[Diagnostic study] may be helpful in the diagnosis of [disease name]. Findings suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

Other diagnostic studies for [disease name] include [diagnostic study 1], which demonstrates [finding 1], [finding 2], and [finding 3], and [diagnostic study 2], which demonstrates [finding 1], [finding 2], and [finding 3].

Treatment

Medical Therapy

There is no treatment for [disease name]; the mainstay of therapy is supportive care.

OR

Supportive therapy for [disease name] includes [therapy 1], [therapy 2], and [therapy 3].

OR

The majority of cases of [disease name] are self-limited and require only supportive care.

OR

[Disease name] is a medical emergency and requires prompt treatment.

OR

The mainstay of treatment for [disease name] is [therapy].

OR   The optimal therapy for [malignancy name] depends on the stage at diagnosis.

OR

[Therapy] is recommended among all patients who develop [disease name].

OR

Pharmacologic medical therapy is recommended among patients with [disease subclass 1], [disease subclass 2], and [disease subclass 3].

OR

Pharmacologic medical therapies for [disease name] include (either) [therapy 1], [therapy 2], and/or [therapy 3].

OR

Empiric therapy for [disease name] depends on [disease factor 1] and [disease factor 2].

OR

Patients with [disease subclass 1] are treated with [therapy 1], whereas patients with [disease subclass 2] are treated with [therapy 2].

Surgery

  • Surgical intervention is not recommended for the management of COVID-19-associated stress cardiomyopathy.

Primary Prevention

  • There are no established measures for the primary prevention of COVID-19-associated stress cardiomyopathy if a patient has acquired COVID-19 infection.
  • Preventive measures should be taken to avoid COVID-19 infection.

Secondary Prevention

  • There are no established measures for the secondary prevention of COVID-19-associated stress cardiomyopathy.

References

  1. Roca E, Lombardi C, Campana M, Vivaldi O, Bigni B, Bertozzi B; et al. (2020). "Takotsubo Syndrome Associated with COVID-19". Eur J Case Rep Intern Med. 7 (5): 001665. doi:10.12890/2020_001665. PMC 7213829 Check |pmc= value (help). PMID 32399453 Check |pmid= value (help).
  2. Pasqualetto MC, Secco E, Nizzetto M, Scevola M, Altafini L, Cester A; et al. (2020). "Stress Cardiomyopathy in COVID-19 Disease". Eur J Case Rep Intern Med. 7 (6): 001718. doi:10.12890/2020_001718. PMC 7279910 Check |pmc= value (help). PMID 32523926 Check |pmid= value (help).
  3. 3.0 3.1 3.2 3.3 3.4 3.5 Jabri A, Kalra A, Kumar A, Alameh A, Adroja S, Bashir H; et al. (2020). "Incidence of Stress Cardiomyopathy During the Coronavirus Disease 2019 Pandemic". JAMA Netw Open. 3 (7): e2014780. doi:10.1001/jamanetworkopen.2020.14780. PMC 7348683 Check |pmc= value (help). PMID 32644140 Check |pmid= value (help).
  4. Hendren NS, Drazner MH, Bozkurt B, Cooper LT (2020). "Description and Proposed Management of the Acute COVID-19 Cardiovascular Syndrome". Circulation. 141 (23): 1903–1914. doi:10.1161/CIRCULATIONAHA.120.047349. PMC 7314493 Check |pmc= value (help). PMID 32297796 Check |pmid= value (help).


Template:WikiDoc Sources