Alopecia pathophysiology

Jump to navigation Jump to search

Alopecia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Alopecia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT Scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Laser Therapy

Concealing Hair Loss

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Alopecia pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Alopecia pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Alopecia pathophysiology

CDC on Alopecia pathophysiology

Alopecia pathophysiology in the news

Blogs on Alopecia pathophysiology

Directions to Hospitals Treating Alopecia

Risk calculators and risk factors for Alopecia pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: José Eduardo Riceto Loyola Junior, M.D.[2]

Overview

Since alopecia ha many different causes, the pathophysiologic mechanism for its development varies according to the cause.

Pathophysiology

Alopecia Areata

Telogen effluvium

Traumatic alopecia

  • Usually seen on children that pull their hair, same mechanism as traction alopecia.
  • May be associated with trichotillomania - a psychiatric condition in which the patient repeatedly pulls their hair.[7]

Androgenetic alopecia

  • In androgenetic alopecia there is a marked miniaturization of the hair follicle and disruption of the hair cycle.
  • It is thought that in androgenetic alopecia the hair loss is the result of the shortening of the anagen phases of hair development and enlongation of the telogen phase that gradually takes place until the hair eventually doesn't even leave the skin surface.[8]
  • The is also an increase in the period from the hair shedding to its regrowth.[8]
  • The miniaturization affects the hair follicle globally, including the dermal papilla which is essential for its maintenance.[8]
  • It is mediated by the presence of androgens, which is further reinforced by the fact that eunuchs do not bald.
  • The molecular mechanism of action for the androgens such as testosterone and 5α-dihydrotestosterone (DHT) to act on the hair follicle is not fully understood.
  • It is theorized that some genes that regulate the follicle cycling may be regulated by the presence of androgens and that the expression of such genes are related to the concentrations of androgen and androgen receptors in the follicle.[8]
  • It is also theorized through observation of families with androgenetic alopecia that these genes related to the disease may act in an autosomal dominant manner in men and autosomal recessive manner in women, though there is strong evidence for a polygenic mode of inheritance.
  • Finasteride is used to treat androgenetic alopecia being a potent 5-alpha-reductase type-2 inhibitor, inhibiting the conversion of testosterone to DHT.

Tinea capitis

Template Sentences

IF the pathogenesis of the disease is unclear:

  • It is thought that [disease name] is the result of / is mediated by / is produced by / is caused by either [hypothesis 1], [hypothesis 2], or [hypothesis 3].

IF the disease is infectious…

  • …and the route of transmission is known:
    • [Pathogen name] is usually transmitted via the [transmission route] route to the human host.
    • Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.

IF the disease has a known genetic component:

  • [Disease name] is transmitted in [mode of genetic transmission] pattern.
  • Genes involved in the pathogenesis of [disease name] include [gene1], [gene2], and [gene3].

IF certain pathology findings are characteristic of the disease:

  • On gross pathology, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].
  • On microscopic histopathological analysis, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].

Genetics

  • Some diseases are genetic, and have particular inheritance patterns, and express different phenotypes.
  • The effect that genetics may have on the pathophysiology of a disease can be described in this section.

Template sentences

  • [Disease name] is transmitted in [mode of genetic transmission] pattern.
  • Genes involved in the pathogenesis of [disease name] include [gene1], [gene2], and [gene3].

Associated Conditions

  • Conditions associated with the disease can be detailed in this section.

Template sentences

  • The most important conditions/diseases associated with [disease name] include:
    • Condition 1: A brief explanation of the condition and its association with the disease
    • Condition 2: A brief explanation of the condition and its association with the disease

For an example of an associated conditions sub-section of pathophysiology, click here.

Histopathology

In androgenetic alopecia, there are miniaturized hair follicles with an increase in the telogen-to-anagen ratio without inflammatory reaction. In anagen effluvium, there is a decrease in anagen hair without any inflammatory response. Finally, in alopecia mucinosa, there is an infiltrate of the epidermis, dermis, and peribulbar lymphocytic infiltrate mainly anaplastic cells. In patients with alopecia areata, there is a peribulbar lymphocytic infiltrate with a decrease in the ratio of anagen to telogen hair. Telogen effluvium is characterized by an increase in the number of catagen hair. In tinea capitis, there is evidence of fungal infection as under a microscope along with a neutrophilic infiltrate.

References

  1. Paus R, Ito N, Takigawa M, Ito T (2003). "The hair follicle and immune privilege". J Investig Dermatol Symp Proc. 8 (2): 188–94. doi:10.1046/j.1087-0024.2003.00807.x. PMID 14582671.
  2. Paus R, Bertolini M (2013). "The role of hair follicle immune privilege collapse in alopecia areata: status and perspectives". J Investig Dermatol Symp Proc. 16 (1): S25–7. doi:10.1038/jidsymp.2013.7. PMID 24326544.
  3. Fischer J, Degenhardt F, Hofmann A, Redler S, Basmanav FB, Heilmann-Heimbach S; et al. (2017). "Genomewide analysis of copy number variants in alopecia areata in a Central European cohort reveals association with MCHR2". Exp Dermatol. 26 (6): 536–541. doi:10.1111/exd.13123. PMID 27306922.
  4. Trüeb RM, Dias MFRG (2018). "Alopecia Areata: a Comprehensive Review of Pathogenesis and Management". Clin Rev Allergy Immunol. 54 (1): 68–87. doi:10.1007/s12016-017-8620-9. PMID 28717940.
  5. Malkud S (2015). "Telogen Effluvium: A Review". J Clin Diagn Res. 9 (9): WE01–3. doi:10.7860/JCDR/2015/15219.6492. PMC 4606321. PMID 26500992.
  6. "StatPearls". 2020. PMID 28613598.
  7. "StatPearls". 2020. PMID 30844205.
  8. 8.0 8.1 8.2 8.3 Ellis JA, Sinclair R, Harrap SB (2002). "Androgenetic alopecia: pathogenesis and potential for therapy". Expert Rev Mol Med. 4 (22): 1–11. doi:10.1017/S1462399402005112. PMID 14585162.

Template:WikiDoc Sources