Contraindications to the Operative Repair of a Type A Dissection
Even acute MI in the setting of dissection is not a surgical contraindication. Acute hemorrhagic stroke is, however, a relative contraindication, due to the necessity of intraoperative heparinization.
2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines[1]
Recommendations for Multidisciplinary Aortic Teams
1. For patients with acute aortic disease that requires urgent repair, a multidisciplinary team should determine the most suitable intervention(Level of Evidence: C-EO)
2. For patients who are asymptomatic with extensive aortic disease, or who may benefit from complex open and endovascular aortic repairs, or with multiple comorbidities for whom intervention is considered, referral to a high-volume center (performing at least 30-40 aortic procedures annually) with experienced surgeons in a Multidisciplinary Aortic Team is reasonable to optimize treatment outcomes.(Level of Evidence: C-LD)
1. In patients with aortic disease, shared decision-making is recommended when determining the appropriate thresholds for intervention, deciding on the type of surgical repair, choosing between open surgical versus endovascular approaches; and in medical management and surveillance(Level of Evidence: C-LD)
2. In patients with aortic disease who are contemplating pregnancy or who are pregnant, shared decision-making is recommended when considering the cardiovascular risks of pregnancy, the diameter thresholds for prophylactic aortic surgery, and the mode of delivery.(Level of Evidence: C-EO)
Recommendations for Surgical Considerations for Non-syndromic Heritable TAA and No Identified Genetic Cause
1. In asymptomatic patients with aneurysms of the aortic root or ascending aorta with non-syndromic heritable thoracic aortic dis-ease (nsHTAD) and no identified genetic cause, determining the timing of surgical repair requires shared decision-making and is informed by known aortic diameters at the time of aortic dissection, TAA repair, or both in affected family members(Level of Evidence: C-LD)
2. In asymptomatic patients with aneurysms of the aortic root or ascending aorta with nsHTAD and no identified genetic cause but no information on aortic diameters at the time of dissection or aneurysm repair in affected family members and who have no high-risk features for adverse aortic events (Table 9) it is recommended to repair the aorta when the maximal diameter reaches ≥5.0 cm(Level of Evidence: C-LD)
3. In patients with aneurysms of the aortic root or ascending aorta with nsHTAD and no identified genetic cause and a maximal aortic diameter of ≥4.5 cm, who have high-risk features for adverse aortic events (Table 9), or who are undergoing cardiac surgery for other indications, aortic repair is reasonable when performed by experienced surgeons in a Multidisciplinary Aortic Team(Level of Evidence: C-LD)
Recommendations for Marfan Syndrome Interventions: Replacement of the Aortic Root in Patients With Marfan Syndrome Referenced studies that support the recommendations are summarized in the Online Data Supplement
1. In patients with Marfan syndrome and an aortic root diameter of ≥5.0 cm, surgery to replace the aortic root and ascending aorta is recommended.(Level of Evidence: B-NR)
2. In patients with Marfan syndrome, an aortic root diameter of ≥4.5 cm, and features associated with an increased risk of aortic dissection (see Table 10), surgery to replace the aortic root and ascending aorta is reasonable, when performed by experienced surgeons in a Multidisciplinary Aortic Team.(Level of Evidence: B-NR)
3. In patients with Marfan syndrome and a maxi-mal cross-sectional aortic root area (cm2) to patient height (m) ratio of ≥10, surgery to replace the aortic root and ascending aorta is reasonable, when performed by experienced surgeons in a Multidisciplinary Aortic Team.(Level of Evidence: C-LD)
4. In patients with Marfan syndrome and an aortic diameter approaching surgical threshold, who are candidates for valve-sparing root replacement (VSRR) and have a very low surgical risk, surgery to replace the aortic root and ascending aorta may be reasonable when performed by experienced surgeons in a Multidisciplinary Aortic Team(Level of Evidence: C-LD)
Recommendations for Diagnostic Testing, Surveillance, and Surgical Intervention for Aortic Dilation in Turner Syndrome
6. In patients with Turnery syndrome who are ≥15 years old and have an ASI of ≥2.5 cm/m2plus risk factors for aortic dissection (Table 12), surgical intervention to replace the aortic root, ascending aorta, or both is reasonable.(Level of Evidence: C-LD)
In those without risk factors for aortic dissection, surgical intervention to replace the aortic root, ascending aorta, or both may be considered.(Level of Evidence: C-EO)
Recommendations for BAV Aortopathy Interventions: Replacement of the Aorta in Patients With BAV Referenced studies that support the recommendations are summarized in the Online Data Supplement
3. In patients with a BAV, a diameter of the aortic root or ascending aorta of 5.0 cm to 5.4 cm, and an additional risk factor for aortic dissection (Table 14), surgery to replace the aortic root, ascending aorta, or both is reasonable, when performed by experienced surgeons in a Multidisciplinary Aortic Team.(Level of Evidence: B-NR)
Recommendations for Initial Surgical Considerations in Acute Type A Aortic Dissection Referenced studies that support the recommendations are summarized in the Online Data Supplement
1. In patients presenting with suspected or con-firmed acute type A aortic dissection, emer-gency surgical consultation and evaluation and immediate surgical intervention is recom-mended because of the high risk of associated life-threatening complications.(Level of Evidence: B-NR)
2. In patients presenting with acute type A aortic dissection, who are stable enough for transfer, transfer from a low- to a high-volume aortic center is reasonable to improve survival.(Level of Evidence: B-NR)
3. In patients presenting with nonhemorrhagic stroke complicating acute type A aortic dis-section, surgical intervention is reasonable over medical therapy to reduce mortality and improve neurologic outcomes.(Level of Evidence: B-NR)
Recommendations for Management of Malperfusion Referenced studies that support the recommendations are summarized in the Online Data Supplement
1. In patients with acute type A aortic dissection presenting with renal, mesenteric, or lower extremity Malperfusion, it is recommended to proceed to immediate operative repair of the ascending aorta.(Level of Evidence: B-NR)
2. In patients with acute type A aortic dissection presenting with clinically significant mesenteric (celiac, SMA) Malperfusion, either immediate operative repair of the ascending aorta or immediate mesenteric revascularization via endovascular or open surgical intervention by those with this expertise before ascending aortic repair is reasonable(Level of Evidence: C-LD)
Recommendations for Surgical Repair Strategies in Acute Type A Aortic Dissection Referenced studies that support the recommendations are summarized in the Online Data Supplement
1. In patients with acute type A aortic dissection and a partially dissected aortic root but no significant aortic valve leaflet pathology, aortic valve resuspension is recommended over valve replacement(Level of Evidence: B-NR)
2. In patients with acute type A aortic dissection who have extensive destruction of the aortic root, a root aneurysm, or a known genetic aortic disorder, aortic root replacement is recommended with a mechanical or biological valved conduit.(Level of Evidence: B-NR)
3. In patients with acute type A aortic dissection undergoing aortic repair, an open distal anastomosis is recommended to improve survival and increase false-lumen thrombosis rates.(Level of Evidence: B-NR)
4. In patients with acute type A aortic dissection without an intimal tear in the arch or a significant arch aneurysm, hemiarch repair is recommended over more extensive arch replacement.(Level of Evidence: B-NR)
In selected patients who are stable, valve-sparing root repair may be reasonable, when performed by experienced surgeons in a Multidisciplinary Aortic Team.(Level of Evidence: C-LD)
5. In patients with acute type A aortic dissection and a dissection flap extending through the arch into the descending thoracic aorta, an extended aortic repair with antegrade stenting of the proximal descending thoracic aorta may be considered to treat Malperfusion and reduce late distal aortic complications.(Level of Evidence: C-LD)
6. In patients with acute type A aortic dissection undergoing surgical repair, axillary cannulation, when feasible, is reasonable over femoral cannulation to reduce the risk of stroke or retrograde Malperfusion.(Level of Evidence: B-NR)
7. In patients with acute type A aortic dis-section undergoing surgical repair who require circulatory arrest, cerebral perfusion is reasonable to improve neurologic out-comes.(Level of Evidence: B-NR)
8. In patients with acute type A aortic dis-section undergoing surgical repair, direct aortic26,27 or innominate artery28 cannulation with imaging guidance is reasonable as an alternative to femoral or axillary cannulation(Level of Evidence: B-NR)
Recommendations for the Management of Acute Type B Aortic Dissection Referenced studies that support the recommendations are summarized in the Online Data Supplement
2. In patients with acute type B aortic dissection and rupture or other complications (Table 27), intervention is recommended(Level of Evidence: C-LD)
In patients with rupture, in the presence of suitable anatomy, endovascular stent grafting, rather than open surgical repair, is recommended.(Level of Evidence: C-EO)
In patients with other complications, in the presence of suitable anatomy, the use of endovascular approaches, rather than open surgical repair, is reasonable.(Level of Evidence: C-LD)
3. In patients with uncomplicated acute type B aortic dissection who have high-risk anatomic features (Table 28), endovascular management may be considered(Level of Evidence: B-R)
Recommendations for Management of IMH Referenced studies that support the recommendations are summarized in the Online Data Supplement
1. In patients with complicated (Table 29) acute type A or type B aortic IMH, urgent repair is recommended(Level of Evidence: B-NR)
2. In patients with uncomplicated acute type A IMH, prompt open surgical repair is recommended(Level of Evidence: B-NR)
3. In patients with uncomplicated acute type B IMH, medical therapy as the initial management strategy is recommended.(Level of Evidence: B-NR)
4. In patients with type B IMH who require repair of the distal aortic arch or descending thoracic aorta (zones 2-5) and have favorable anatomy, endo-vascular repair is reasonable when performed by surgeons with endovascular expertise.(Level of Evidence: C-LD)
5. In patients with type B IMH who require repair of the distal aortic arch or descending thoracic aorta (zones 2-5) and have unfavorable anatomy for endovascular repair, open surgical repair is reasonable.(Level of Evidence: C-LD)
In selected patients with uncomplicated acute type A IMH who are at increased operative risk and do not have high-risk imaging features (Table 30), an initial or expectant approach of medical management may be considered.(Level of Evidence: C-LD)
6. In patients with uncomplicated type B IMH and high-risk imaging features (Table 30), intervention may be reasonable(Level of Evidence: C-LD)
Recommendation for Long-Term Management After Acute Aortic Dissection and IMH Referenced studies that support the recommendation are summarized in the Online Data Supplement
1. In patients with a previous acute aortic dissection and IMH, whether initially treated medically or with intervention, who have chronic residual TAD and an aneurysm with a total aortic diameter of ≥5.5 cm, elective thoracic aortic repair is recommended( Level of Evidence: B-NR)
2014 ESC Guidelines on the Diagnosis and Treatment of Aortic Diseases[2]
" The axillary artery should be considered as first choice for cannulation for surgery of the aortic arch and in aortic dissection. (Level of Evidence: C)"
2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines (DO NOT EDIT)[3]
"1. For patients with acute aortic disease that requires urgent repair, a multidisciplinary team should determine the most suitable intervention. (Level of Evidence: C-EO)"
"1. For patients who are asymptomatic with extensive aortic disease, or who may benefit from complex open and endovascular aortic repairs, or with multiple comorbidities for whom intervention is considered, referral to a high-volume center (performing at least 30-40 aortic procedures annually) with expe-rienced surgeons in a Multidisciplinary Aortic Team is reasonable to optimize treatment outcomes. (Level of Evidence: C-LD)"
"1. In patients with aortic disease, shared deci-sion-making is recommended when determining the appropriate thresholds for intervention, deciding on the type of surgical repair, choos-ing between open surgical versus endovascular approaches; and in medical management and surveillance. (Level of Evidence: C-LD)"
"3. If the maximal cross-sectional area in square centimeters of the ascending aorta or root divided by the patient's height in meters exceeds a ratio of 10, surgical repair is reasonable because shorter patients have dissection at a smaller size and 15% of patients with Marfan syndrome have dissection at a size smaller than 5.0 cm.[6][7][8](Level of Evidence: C)"
"1. In preparation for surgery, imaging studies adequate to establish the extent of disease and the potential limits of the planned procedure are recommended. (Level of Evidence: C)"
"1. The choice of anesthetic techniques and agents and patient monitoring techniques should be tailored to individual patient needs to facilitate surgical and perfusion techniques and the monitoring of hemodynamics and organ function. (Level of Evidence: C)"
↑"2014 ESC Guidelines on the diagnosis and treatment of aortic diseases". European Heart Journal. 35 (41): 2873–2926. 2014. doi:10.1093/eurheartj/ehu281. ISSN0195-668X.
↑Loeys BL, Schwarze U, Holm T; et al. (2006). "Aneurysm syndromes caused by mutations in the TGF-beta receptor". N. Engl. J. Med. 355 (8): 788–98. doi:10.1056/NEJMoa055695. PMID16928994. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Svensson LG, Blackstone EH, Feng J; et al. (2007). "Are Marfan syndrome and marfanoid patients distinguishable on long-term follow-up?". Ann. Thorac. Surg. 83 (3): 1067–74. doi:10.1016/j.athoracsur.2006.10.062. PMID17307461. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Gott VL, Greene PS, Alejo DE; et al. (1999). "Replacement of the aortic root in patients with Marfan's syndrome". N. Engl. J. Med. 340 (17): 1307–13. doi:10.1056/NEJM199904293401702. PMID10219065. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Svensson LG, Khitin L (2002). "Aortic cross-sectional area/height ratio timing of aortic surgery in asymptomatic patients with Marfan syndrome". J. Thorac. Cardiovasc. Surg. 123 (2): 360–1. PMID11828302. Unknown parameter |month= ignored (help)
↑Boden WE, O'Rourke RA, Teo KK; et al. (2007). "Optimal medical therapy with or without PCI for stable coronary disease". N. Engl. J. Med. 356 (15): 1503–16. doi:10.1056/NEJMoa070829. PMID17387127. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Poldermans D, Schouten O, Vidakovic R; et al. (2007). "A clinical randomized trial to evaluate the safety of a noninvasive approach in high-risk patients undergoing major vascular surgery: the DECREASE-V Pilot Study". J. Am. Coll. Cardiol. 49 (17): 1763–9. doi:10.1016/j.jacc.2006.11.052. PMID17466225. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Horlocker TT, Wedel DJ, Benzon H; et al. (2003). "Regional anesthesia in the anticoagulated patient: defining the risks (the second ASRA Consensus Conference on Neuraxial Anesthesia and Anticoagulation)". Reg Anesth Pain Med. 28 (3): 172–97. doi:10.1053/rapm.2003.50046. PMID12772135.CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑"Practice guidelines for perioperative transesophageal echocardiography. A report by the American Society of Anesthesiologists and the Society of Cardiovascular Anesthesiologists Task Force on Transesophageal Echocardiography". Anesthesiology. 84 (4): 986–1006. 1996. PMID8638856. Unknown parameter |month= ignored (help)
↑Fattori R, Caldarera I, Rapezzi C; et al. (2000). "Primary endoleakage in endovascular treatment of the thoracic aorta: importance of intraoperative transesophageal echocardiography". J. Thorac. Cardiovasc. Surg. 120 (3): 490–5. doi:10.1067/mtc.2000.108904. PMID10962409. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Abe S, Ono S, Murata K; et al. (2000). "Usefulness of transesophageal echocardiographic monitoring in transluminal endovascular stent-graft repair for thoracic aortic aneurysm". Jpn. Circ. J. 64 (12): 960–4. PMID11194291. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Dong CC, MacDonald DB, Janusz MT (2002). "Intraoperative spinal cord monitoring during descending thoracic and thoracoabdominal aneurysm surgery". Ann. Thorac. Surg. 74 (5): S1873–6, discussion S1892–8. PMID12440684. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Ferraris VA, Ferraris SP, Saha SP; et al. (2007). "Perioperative blood transfusion and blood conservation in cardiac surgery: the Society of Thoracic Surgeons and The Society of Cardiovascular Anesthesiologists clinical practice guideline". Ann. Thorac. Surg. 83 (5 Suppl): S27–86. doi:10.1016/j.athoracsur.2007.02.099. PMID17462454. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Akashi H, Tayama K, Fujino T; et al. (2000). "Cerebral protection selection in aortic arch surgery for patients with preoperative complications of cerebrovascular disease". Jpn. J. Thorac. Cardiovasc. Surg. 48 (12): 782–8. PMID11197822. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Ehrlich MP, Fang WC, Grabenwöger M; et al. (1999). "Impact of retrograde cerebral perfusion on aortic arch aneurysm repair". J. Thorac. Cardiovasc. Surg. 118 (6): 1026–32. PMID10595974. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Di Eusanio M, Wesselink RM, Morshuis WJ, Dossche KM, Schepens MA (2003). "Deep hypothermic circulatory arrest and antegrade selective cerebral perfusion during ascending aorta-hemiarch replacement: a retrospective comparative study". J. Thorac. Cardiovasc. Surg. 125 (4): 849–54. doi:10.1067/mtc.2003.8. PMID12698148. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Hagl C, Ergin MA, Galla JD; et al. (2001). "Neurologic outcome after ascending aorta-aortic arch operations: effect of brain protection technique in high-risk patients". J. Thorac. Cardiovasc. Surg. 121 (6): 1107–21. doi:10.1067/mtc.2001.113179. PMID11385378. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Reich DL, Uysal S, Sliwinski M; et al. (1999). "Neuropsychologic outcome after deep hypothermic circulatory arrest in adults". J. Thorac. Cardiovasc. Surg. 117 (1): 156–63. PMID9869770. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Reich DL, Uysal S, Ergin MA, Bodian CA, Hossain S, Griepp RB (2001). "Retrograde cerebral perfusion during thoracic aortic surgery and late neuropsychological dysfunction". Eur J Cardiothorac Surg. 19 (5): 594–600. PMID11343938. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Usui A, Yasuura K, Watanabe T, Maseki T (1999). "Comparative clinical study between retrograde cerebral perfusion and selective cerebral perfusion in surgery for acute type A aortic dissection". Eur J Cardiothorac Surg. 15 (5): 571–8. PMID10386399. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Grigore AM, Grocott HP, Mathew JP; et al. (2002). "The rewarming rate and increased peak temperature alter neurocognitive outcome after cardiac surgery". Anesth. Analg. 94 (1): 4–10, table of contents. PMID11772792. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Grocott HP, Mackensen GB, Grigore AM; et al. (2002). "Postoperative hyperthermia is associated with cognitive dysfunction after coronary artery bypass graft surgery". Stroke. 33 (2): 537–41. PMID11823666. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Bar-Yosef S, Mathew JP, Newman MF, Landolfo KP, Grocott HP (2004). "Prevention of cerebral hyperthermia during cardiac surgery by limiting on-bypass rewarming in combination with post-bypass body surface warming: a feasibility study". Anesth. Analg. 99 (3): 641–6, table of contents. doi:10.1213/01.ANE.0000130354.90659.63. PMID15333386. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Kunihara T, Grün T, Aicher D; et al. (2005). "Hypothermic circulatory arrest is not a risk factor for neurologic morbidity in aortic surgery: a propensity score analysis". J. Thorac. Cardiovasc. Surg. 130 (3): 712–8. doi:10.1016/j.jtcvs.2005.03.043. PMID16153918. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Schepens MA, Dossche KM, Morshuis WJ, van den Barselaar PJ, Heijmen RH, Vermeulen FE (2002). "The elephant trunk technique: operative results in 100 consecutive patients". Eur J Cardiothorac Surg. 21 (2): 276–81. PMID11825735. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Deeb GM, Williams DM, Quint LE, Monaghan HM, Shea MJ (1999). "Risk analysis for aortic surgery using hypothermic circulatory arrest with retrograde cerebral perfusion". Ann. Thorac. Surg. 67 (6): 1883–6, discussion 1891–4. PMID10391332. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Ehrlich MP, Schillinger M, Grabenwöger M; et al. (2003). "Predictors of adverse outcome and transient neurological dysfunction following surgical treatment of acute type A dissections". Circulation. 108 Suppl 1: II318–23. doi:10.1161/01.cir.0000087428.63818.50. PMID12970253. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Fleck TM, Czerny M, Hutschala D, Koinig H, Wolner E, Grabenwoger M (2003). "The incidence of transient neurologic dysfunction after ascending aortic replacement with circulatory arrest". Ann. Thorac. Surg. 76 (4): 1198–202. PMID14530011. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Moshkovitz Y, David TE, Caleb M, Feindel CM, de Sa MP (1998). "Circulatory arrest under moderate systemic hypothermia and cold retrograde cerebral perfusion". Ann. Thorac. Surg. 66 (4): 1179–84. PMID9800803. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Okita Y, Takamoto S, Ando M, Morota T, Matsukawa R, Kawashima Y (1998). "Mortality and cerebral outcome in patients who underwent aortic arch operations using deep hypothermic circulatory arrest with retrograde cerebral perfusion: no relation of early death, stroke, and delirium to the duration of circulatory arrest". J. Thorac. Cardiovasc. Surg. 115 (1): 129–38. PMID9451056. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Ueda Y, Okita Y, Aomi S, Koyanagi H, Takamoto S (1999). "Retrograde cerebral perfusion for aortic arch surgery: analysis of risk factors". Ann. Thorac. Surg. 67 (6): 1879–82, discussion 1891–4. PMID10391331. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Wong CH, Bonser RS (1999). "Does retrograde cerebral perfusion affect risk factors for stroke and mortality after hypothermic circulatory arrest?". Ann. Thorac. Surg. 67 (6): 1900–3, discussion 1919–21. PMID10391335. Unknown parameter |month= ignored (help)
↑Di Eusanio M, Schepens MA, Morshuis WJ; et al. (2003). "Brain protection using antegrade selective cerebral perfusion: a multicenter study". Ann. Thorac. Surg. 76 (4): 1181–8, discussion 1188–9. PMID14530009. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Di Eusanio M, Schepens MA, Morshuis WJ, Di Bartolomeo R, Pierangeli A, Dossche KM (2002). "Antegrade selective cerebral perfusion during operations on the thoracic aorta: factors influencing survival and neurologic outcome in 413 patients". J. Thorac. Cardiovasc. Surg. 124 (6): 1080–6. doi:10.1067/mtc.2002.124994. PMID12447172. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Di Eusanio M, Tan ME, Schepens MA; et al. (2003). "Surgery for acute type A dissection using antegrade selective cerebral perfusion: experience with 122 patients". Ann. Thorac. Surg. 75 (2): 514–9. PMID12607664. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Kazui T, Yamashita K, Washiyama N; et al. (2002). "Impact of an aggressive surgical approach on surgical outcome in type A aortic dissection". Ann. Thorac. Surg. 74 (5): S1844–7, discussion S1857–63. PMID12440678. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Kazui T, Yamashita K, Washiyama N; et al. (2007). "Aortic arch replacement using selective cerebral perfusion". Ann. Thorac. Surg. 83 (2): S796–8, discussion S824–31. doi:10.1016/j.athoracsur.2006.10.082. PMID17257929. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Numata S, Ogino H, Sasaki H; et al. (2003). "Total arch replacement using antegrade selective cerebral perfusion with right axillary artery perfusion". Eur J Cardiothorac Surg. 23 (5): 771–5, discussion 775. PMID12754031. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Sasaki H, Ogino H, Matsuda H, Minatoya K, Ando M, Kitamura S (2007). "Integrated total arch replacement using selective cerebral perfusion: a 6-year experience". Ann. Thorac. Surg. 83 (2): S805–10, discussion S824–31. doi:10.1016/j.athoracsur.2006.10.094. PMID17257931. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Strauch JT, Spielvogel D, Lauten A; et al. (2004). "Axillary artery cannulation: routine use in ascending aorta and aortic arch replacement". Ann. Thorac. Surg. 78 (1): 103–8, discussion 103–8. doi:10.1016/j.athoracsur.2004.01.035. PMID15223412. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Kamiya H, Hagl C, Kropivnitskaya I; et al. (2007). "Quick proximal arch replacement with moderate hypothermic circulatory arrest". Ann. Thorac. Surg. 83 (3): 1055–8. doi:10.1016/j.athoracsur.2006.09.085. PMID17307459. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Matalanis G, Hata M, Buxton BF (2003). "A retrospective comparative study of deep hypothermic circulatory arrest, retrograde, and antegrade cerebral perfusion in aortic arch surgery". Ann Thorac Cardiovasc Surg. 9 (3): 174–9. PMID12875639. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Okita Y, Minatoya K, Tagusari O, Ando M, Nagatsuka K, Kitamura S (2001). "Prospective comparative study of brain protection in total aortic arch replacement: deep hypothermic circulatory arrest with retrograde cerebral perfusion or selective antegrade cerebral perfusion". Ann. Thorac. Surg. 72 (1): 72–9. PMID11465234. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Zierer A, Aybek T, Risteski P, Dogan S, Wimmer-Greinecker G, Moritz A (2005). "Moderate hypothermia (30 degrees C) for surgery of acute type A aortic dissection". Thorac Cardiovasc Surg. 53 (2): 74–9. doi:10.1055/s-2004-830458. PMID15786004. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Svensson LG, Nadolny EM, Kimmel WA (2002). "Multimodal protocol influence on stroke and neurocognitive deficit prevention after ascending/arch aortic operations". Ann. Thorac. Surg. 74 (6): 2040–6. PMID12643393. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Okita Y, Ando M, Minatoya K, Kitamura S, Takamoto S, Nakajima N (1999). "Predictive factors for mortality and cerebral complications in arteriosclerotic aneurysm of the aortic arch". Ann. Thorac. Surg. 67 (1): 72–8. PMID10086527. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Svensson LG, Crawford ES, Hess KR; et al. (1993). "Deep hypothermia with circulatory arrest. Determinants of stroke and early mortality in 656 patients". J. Thorac. Cardiovasc. Surg. 106 (1): 19–28, discussion 28–31. PMID8321002. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Coselli JS, LeMaire SA, Köksoy C, Schmittling ZC, Curling PE (2002). "Cerebrospinal fluid drainage reduces paraplegia after thoracoabdominal aortic aneurysm repair: results of a randomized clinical trial". J. Vasc. Surg. 35 (4): 631–9. PMID11932655. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Khan SN, Stansby G (2004). "Cerebrospinal fluid drainage for thoracic and thoracoabdominal aortic aneurysm surgery". Cochrane Database Syst Rev (1): CD003635. doi:10.1002/14651858.CD003635.pub2. PMID14974026.
↑Estrera AL, Miller CC, Chen EP; et al. (2005). "Descending thoracic aortic aneurysm repair: 12-year experience using distal aortic perfusion and cerebrospinal fluid drainage". Ann. Thorac. Surg. 80 (4): 1290–6, discussion 1296. doi:10.1016/j.athoracsur.2005.02.021. PMID16181856. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Safi HJ, Hess KR, Randel M; et al. (1996). "Cerebrospinal fluid drainage and distal aortic perfusion: reducing neurologic complications in repair of thoracoabdominal aortic aneurysm types I and II". J. Vasc. Surg. 23 (2): 223–8, discussion 229. PMID8637099. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑ 58.058.1Hollier LH, Money SR, Naslund TC; et al. (1992). "Risk of spinal cord dysfunction in patients undergoing thoracoabdominal aortic replacement". Am. J. Surg. 164 (3): 210–3, discussion 213–4. PMID1415916. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Svensson LG, Khitin L, Nadolny EM, Kimmel WA (2003). "Systemic temperature and paralysis after thoracoabdominal and descending aortic operations". Arch Surg. 138 (2): 175–9, discussion 180. PMID12578415. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Cambria RP, Davison JK, Carter C; et al. (2000). "Epidural cooling for spinal cord protection during thoracoabdominal aneurysm repair: A five-year experience". J. Vasc. Surg. 31 (6): 1093–102. PMID10842145. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Cambria RP, Davison JK, Zannetti S; et al. (1997). "Clinical experience with epidural cooling for spinal cord protection during thoracic and thoracoabdominal aneurysm repair". J. Vasc. Surg. 25 (2): 234–41, discussion 241–3. PMID9052558. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Woloszyn TT, Marini CP, Coons MS; et al. (1990). "Cerebrospinal fluid drainage and steroids provide better spinal cord protection during aortic cross-clamping than does either treatment alone". Ann. Thorac. Surg. 49 (1): 78–82, discussion 83. PMID2297277. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Schurink GW, Nijenhuis RJ, Backes WH; et al. (2007). "Assessment of spinal cord circulation and function in endovascular treatment of thoracic aortic aneurysms". Ann. Thorac. Surg. 83 (2): S877–81, discussion S890–2. doi:10.1016/j.athoracsur.2006.11.028. PMID17257945. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Ogino H, Sasaki H, Minatoya K, Matsuda H, Yamada N, Kitamura S (2006). "Combined use of adamkiewicz artery demonstration and motor-evoked potentials in descending and thoracoabdominal repair". Ann. Thorac. Surg. 82 (2): 592–6. doi:10.1016/j.athoracsur.2006.03.041. PMID16863770. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Guerit JM, Witdoeckt C, Verhelst R, Matta AJ, Jacquet LM, Dion RA (1999). "Sensitivity, specificity, and surgical impact of somatosensory evoked potentials in descending aorta surgery". Ann. Thorac. Surg. 67 (6): 1943–6, discussion 1953–8. PMID10391345. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Hager B, Betschart M, Krapf R (1996). "Effect of postoperative intravenous loop diuretic on renal function after major surgery". Schweiz Med Wochenschr. 126 (16): 666–73. PMID8658094. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Jacobs MJ, de Mol BA, Legemate DA, Veldman DJ, de Haan P, Kalkman CJ (1997). "Retrograde aortic and selective organ perfusion during thoracoabdominal aortic aneurysm repair". Eur J Vasc Endovasc Surg. 14 (5): 360–6. PMID9413376. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Köksoy C, LeMaire SA, Curling PE; et al. (2002). "Renal perfusion during thoracoabdominal aortic operations: cold crystalloid is superior to normothermic blood". Ann. Thorac. Surg. 73 (3): 730–8. PMID11899174. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Svensson LG, Coselli JS, Safi HJ, Hess KR, Crawford ES (1989). "Appraisal of adjuncts to prevent acute renal failure after surgery on the thoracic or thoracoabdominal aorta". J. Vasc. Surg. 10 (3): 230–9. PMID2778885. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)