Transduction (biophysics)

Jump to navigation Jump to search

WikiDoc Resources for Transduction (biophysics)

Articles

Most recent articles on Transduction (biophysics)

Most cited articles on Transduction (biophysics)

Review articles on Transduction (biophysics)

Articles on Transduction (biophysics) in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Transduction (biophysics)

Images of Transduction (biophysics)

Photos of Transduction (biophysics)

Podcasts & MP3s on Transduction (biophysics)

Videos on Transduction (biophysics)

Evidence Based Medicine

Cochrane Collaboration on Transduction (biophysics)

Bandolier on Transduction (biophysics)

TRIP on Transduction (biophysics)

Clinical Trials

Ongoing Trials on Transduction (biophysics) at Clinical Trials.gov

Trial results on Transduction (biophysics)

Clinical Trials on Transduction (biophysics) at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Transduction (biophysics)

NICE Guidance on Transduction (biophysics)

NHS PRODIGY Guidance

FDA on Transduction (biophysics)

CDC on Transduction (biophysics)

Books

Books on Transduction (biophysics)

News

Transduction (biophysics) in the news

Be alerted to news on Transduction (biophysics)

News trends on Transduction (biophysics)

Commentary

Blogs on Transduction (biophysics)

Definitions

Definitions of Transduction (biophysics)

Patient Resources / Community

Patient resources on Transduction (biophysics)

Discussion groups on Transduction (biophysics)

Patient Handouts on Transduction (biophysics)

Directions to Hospitals Treating Transduction (biophysics)

Risk calculators and risk factors for Transduction (biophysics)

Healthcare Provider Resources

Symptoms of Transduction (biophysics)

Causes & Risk Factors for Transduction (biophysics)

Diagnostic studies for Transduction (biophysics)

Treatment of Transduction (biophysics)

Continuing Medical Education (CME)

CME Programs on Transduction (biophysics)

International

Transduction (biophysics) en Espanol

Transduction (biophysics) en Francais

Business

Transduction (biophysics) in the Marketplace

Patents on Transduction (biophysics)

Experimental / Informatics

List of terms related to Transduction (biophysics)

In biophysics, transduction is the conveyance of energy from one electron (a donor) to another (a receptor), at the same time that the class of energy changes.

Photonic energy, the kinetic energy of a photon, may follow the following paths:

  • be released again as a photon of less energy;
  • be transferred to a recipient with no change in class;
  • be dissipated as heat; or
  • be transduced

In photosynthesis, when the electrons of the "chlorophyll pair" receive the photon energy from the "collecting" associated pigments, the photonic energy is "destined" to link one molecule of phosphate to one of NAD. The resulting NADP in turn will use the stored energy in the generation of ATP, which is the end point of the light-induced photosynthetic process. This means that the photon's energy ends up its circuit by being transduced to an electron that takes part in the formation of a molecular link of energy-rich phosphate.

In the pathway of this end-point transduction, the energy is transferred along a number of molecules (cytochromes), in a downward way so that energy is partially dissipated at each step. The liberated heat energy serves the homeostasis of the plant, and at the end of the chain the remaining energy is perhaps exactly the one that is needed to build NADP.

This process is committed; i.e. there is no return path. Homeostasis, theoretically, might save the day only at the beginning: before the luminic energy transferred to the "chlorophyl pair" is conveyed to the first element of the cytochrome chain, there is a gap in the process when the energy is carried as a series of excitons. These are now called resonant-energy-transferring molecules of the chlorophyll class, which transfer what is considered electromagnetic energy, from one to its neighbor with no participation of electrons nor enzymes. At this stage, if the first pigment has received an excess of light, the "exciton" perhaps might dissipate the energy as heat.

Acknowledgements

The content on this page was first contributed by: Henry A. Hoff.

Initial content for this page in some instances came from Wikipedia.

References

See also