Pulmonary embolism medical therapy

Revision as of 18:08, 16 September 2011 by WikiBot (talk | contribs)
Jump to navigation Jump to search

Pulmonary Embolism Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Pulmonary Embolism from other Diseases

Epidemiology and Demographics

Risk Factors

Triggers

Natural History, Complications and Prognosis

Diagnosis

Diagnostic criteria

Assessment of Clinical Probability and Risk Scores

Pulmonary Embolism Assessment of Probability of Subsequent VTE and Risk Scores

History and Symptoms

Physical Examination

Laboratory Findings

Arterial Blood Gas Analysis

D-dimer

Biomarkers

Electrocardiogram

Chest X Ray

Ventilation/Perfusion Scan

Echocardiography

Compression Ultrasonography

CT

MRI

Treatment

Treatment approach

Medical Therapy

IVC Filter

Pulmonary Embolectomy

Pulmonary Thromboendarterectomy

Discharge Care and Long Term Treatment

Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Follow-Up

Support group

Special Scenario

Pregnancy

Cancer

Trials

Landmark Trials

Case Studies

Case #1

Pulmonary embolism medical therapy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Pulmonary embolism medical therapy

CDC on Pulmonary embolism medical therapy

Pulmonary embolism medical therapy in the news

Blogs on Pulmonary embolism medical therapy

Directions to Hospitals Treating Pulmonary embolism medical therapy

Risk calculators and risk factors for Pulmonary embolism medical therapy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editors-in-Chief: Ujjwal Rastogi, MBBS [2]

Overview

In most cases, anticoagulant therapy is the mainstay of treatment. Acutely, supportive treatments, such as oxygen or analgesia, are often required.

Massive PE causing hemodynamic instability (marked decreased oxygen saturation, tachycardia and/or hypotension) is an indication for thrombolysis, the enzymatic destruction of the clot with medication. Some advocate its use also if right ventricular dysfunction can be demonstrated on echocardiography.[1]

Anticoagulation

In most cases, anticoagulant therapy is the mainstay of treatment. Heparin, low molecular weight heparins (such as enoxaparin and dalteparin), or fondaparinux is administered initially, while warfarin therapy is commenced (this may take several days, usually while the patient is in hospital). Warfarin therapy often requires frequent dose adjustment and monitoring of the INR. In PE, INRs between 2.0 and 3.0 are generally considered ideal. If another episode of PE occurs under warfarin treatment, the INR window may be increased to e.g. 2.5-3.5 (unless there are contraindications) or anticoagulation may be changed to a different anticoagulant e.g. low molecular weight heparin. In patients with an underlying malignancy, therapy with a course of low molecular weight heparin may be favored over warfarin based on the results of the CLOT trial.[2] Similarly, pregnant women are often maintained on low molecular weight heparin to avoid the known teratogenic effects of warfarin.

Warfarin therapy is usually continued for 3-6 months, or "lifelong" if there have been previous DVTs or PEs, or none of the usual risk factors is present. An abnormal D-dimer level at the end of treatment might signal the need for continued treatment among patients with a first unprovoked pulmonary embolus.[3]

Used inferior vena cava filter, presented with a British twenty pence coin for scale.

Inferior vena cava filter

If anticoagulant therapy is contraindicated and/or ineffective an inferior vena cava filter may be implanted.[4]

Thrombolysis

Thrombolysis can be given for severe PEs when surgery is not immediately available or possible (e.g. periarrest or during cardiac arrest). The only trial that addressed this issue had 8 patients; the four receiving thrombolysis survived, while the four who received only heparin died.[5] The use of thrombolysis in moderate PEs is still debatable. The aim of the therapy is to dissolve the clot, but there is an attendant risk of bleeding or stroke.[6]

References

  1. Goldhaber SZ. Pulmonary embolism. Lancet 2004;363:1295-305. PMID 15094276.
  2. Lee AY, Levine MN, Baker RI, Bowden C, Kakkar AK, Prins M, Rickles FR, Julian JA, Haley S, Kovacs MJ, Gent M (2003). "Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer". N Engl J Med. 349 (2): 146–53. PMID 12853587.
  3. Palareti G, Cosmi B, Legnani C; et al. (2006). "D-dimer testing to determine the duration of anticoagulation therapy". N. Engl. J. Med. 355 (17): 1780–9. doi:10.1056/NEJMoa054444. PMID 17065639.
  4. Decousus H, Leizorovicz A, Parent F, Page Y, Tardy B, Girard P, Laporte S, Faivre R, Charbonnier B, Barral F, Huet Y, Simonneau G (1998). "A clinical trial of vena caval filters in the prevention of pulmonary embolism in patients with proximal deep-vein thrombosis. Prévention du Risque d'Embolie Pulmonaire par Interruption Cave Study Group". N Engl J Med. 338 (7): 409–15. PMID 9459643.
  5. Jerjes-Sanchez C, Ramirez-Rivera A, de Lourdes Garcia M, Arriaga-Nava R, Valencia S, Rosado-Buzzo A, Pierzo JA, Rosas E. Streptokinase and Heparin versus Heparin Alone in Massive Pulmonary Embolism: A Randomized Controlled Trial. J Thromb Thrombolysis 1995;2:227-229. PMID 10608028.
  6. Dong B, Jirong Y, Liu G, Wang Q, Wu T. Thrombolytic therapy for pulmonary embolism. Cochrane Database Syst Rev 2006;(2):CD004437. PMID 16625603.

Template:WH Template:WS