PAC-1
File:PAC-1.svg | |
Identifiers | |
---|---|
| |
CAS Number | |
PubChem CID | |
E number | {{#property:P628}} |
ECHA InfoCard | {{#property:P2566}}Lua error in Module:EditAtWikidata at line 36: attempt to index field 'wikibase' (a nil value). |
Chemical and physical data | |
Formula | C23H28N4O2 |
Molar mass | 392.494 g/mol |
WikiDoc Resources for PAC-1 |
Articles |
---|
Media |
Evidence Based Medicine |
Clinical Trials |
Ongoing Trials on PAC-1 at Clinical Trials.gov Clinical Trials on PAC-1 at Google
|
Guidelines / Policies / Govt |
US National Guidelines Clearinghouse on PAC-1
|
Books |
News |
Commentary |
Definitions |
Patient Resources / Community |
Directions to Hospitals Treating PAC-1 Risk calculators and risk factors for PAC-1
|
Healthcare Provider Resources |
Continuing Medical Education (CME) |
International |
|
Business |
Experimental / Informatics |
Overview
PAC-1 (first procaspase activating compound) is a synthesized chemical compound that selectively induces apoptosis, or cell suicide, in cancerous cells. PAC-1 has shown good results in mouse models and is being further evaluated for use in humans.
Function and discovery
PAC-1 (pronounced "pack one") was discovered at the University of Illinois at Urbana-Champaign during a process that screened many chemicals for anti-tumor potential. This molecule, when delivered to cancer cells, signals the cells to self-destruct by activating an "executioner" protein, procaspase-3. Then, the activated executioner protein begins a cascade of events that destroys the machinery of the cell.
Uses of apoptosis in the body and its irregularities
This cascade of events is named apoptosis. Apoptosis is self-induced in cells to combat infections or DNA damage. For instance, when a cell in one's body is infected with a bacterium or virus, it will self-destruct to take away the resources needed by the virus to proliferate. Apoptosis is also found to help in embryo development (destroying the webbing in between an embryo's fingers to separate the fingers) and the regular replenishment of cells that are constantly being used up or destroyed (cells that line the intestinal tract), also called homeostasis.
The problem lies when one part of the apoptosis pathway is broken. Normally, the balance between cell division and apoptosis is rigorously regulated to keep the integrity of organs and tissues. Examples of broken apoptosis pathways occur in many cancers. If old lung cells cannot self-destruct to make room for new lung cells, a large mass of cells form and a tumor is made.
In many cases, the apoptotic pathway is disrupted because procaspase-3, the executioner protein, cannot be activated by the cell. This is analogous to an executioner who does not have orders to kill. Without the orders, the condemned will not die. The same analogy can be made with procaspase-3. Without activated procaspase-3, the apoptotic cascade will not occur and the cell will not destroy itself no matter how necessary it may be. PAC-1 acts a replacement order that works and bypasses the lawyers, court orders, and governor's calls. It will activate procaspase-3 indiscriminately.
How PAC-1 affects the apoptotic process
In cells, the executioner protein, caspase-3, is stored in its inactive form, procaspase-3. This way, the cell can quickly undergo apoptosis by activating the protein that is already there. This inactive form is called a zymogen. Procaspase-3 has a “safety catch” made of three aspartate amino acids. When this safety catch is released by the cell, procaspase-3 is activated to caspase-3, which starts the apoptotic cycle. PAC-1 cleaves these three amino acids to activate procaspase-3 into caspase-3. Also, caspase-3 further activates other molecules of procaspase-3 in the cell, causing an exponential increase in caspase-3 concentration. PAC-1 facilitates this process and causes the cell to undergo apoptosis quickly.[1]
Unfortunately, a selectivity problem arises because procaspase-3 is present in most cells of the body. However, it has been shown that in many cancers, including certain neuroblastomas, lymphomas, leukemias, melanomas, and liver cancers, procaspase-3 is present in higher concentrations.[1] For instance, lung cancer cells can have over 1000 times more procaspase-3 than normal cells.[1] Therefore, by controlling the dosage, one can achieve selectivity between normal and cancerous cells.
Further research and human application
Thus far, PAC-1 seems promising as a new anti-tumor drug. It is synthetically available and a few mouse trials have been performed with moderate success. PAC-1 is the first of many small molecules to directly influence the apoptotic machinery of cells.
References
External links
- Pages with script errors
- Pages with broken file links
- E number from Wikidata
- ECHA InfoCard ID from Wikidata
- Chemical articles with unknown parameter in Infobox drug
- Articles without EBI source
- Chemical pages without ChemSpiderID
- Chemical pages without DrugBank identifier
- Articles without KEGG source
- Articles without InChI source
- Articles without UNII source
- Drugs missing an ATC code
- Drugs with no legal status
- Articles containing unverified chemical infoboxes
- Cell signaling
- Chemotherapeutic agents
- Immune system
- Programmed cell death