D-dimer

Revision as of 18:11, 11 May 2013 by Badgettrg (talk | contribs) (→‎Reference range: From CZ)
Jump to navigation Jump to search

WikiDoc Resources for D-dimer

Articles

Most recent articles on D-dimer

Most cited articles on D-dimer

Review articles on D-dimer

Articles on D-dimer in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on D-dimer

Images of D-dimer

Photos of D-dimer

Podcasts & MP3s on D-dimer

Videos on D-dimer

Evidence Based Medicine

Cochrane Collaboration on D-dimer

Bandolier on D-dimer

TRIP on D-dimer

Clinical Trials

Ongoing Trials on D-dimer at Clinical Trials.gov

Trial results on D-dimer

Clinical Trials on D-dimer at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on D-dimer

NICE Guidance on D-dimer

NHS PRODIGY Guidance

FDA on D-dimer

CDC on D-dimer

Books

Books on D-dimer

News

D-dimer in the news

Be alerted to news on D-dimer

News trends on D-dimer

Commentary

Blogs on D-dimer

Definitions

Definitions of D-dimer

Patient Resources / Community

Patient resources on D-dimer

Discussion groups on D-dimer

Patient Handouts on D-dimer

Directions to Hospitals Treating D-dimer

Risk calculators and risk factors for D-dimer

Healthcare Provider Resources

Symptoms of D-dimer

Causes & Risk Factors for D-dimer

Diagnostic studies for D-dimer

Treatment of D-dimer

Continuing Medical Education (CME)

CME Programs on D-dimer

International

D-dimer en Espanol

D-dimer en Francais

Business

D-dimer in the Marketplace

Patents on D-dimer

Experimental / Informatics

List of terms related to D-dimer

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]


Overview

D-dimer is a fibrin degradation product, a small protein fragment present in the blood after a blood clot is degraded by fibrinolysis.

D-dimer concentration may be determined in a tested to help diagnose thrombosis. Since its introduction in the 1990s, it has become an important test performed in patients suspected of thrombotic disorders. While a negative result practically rules out thrombosis, a positive result can indicate thrombosis but does not rule out other potential aetiologies. Its main use, therefore, is to exclude thromboembolic disease where the probability is low.

Indications

D-dimer testing is of clinical use when there is a suspicion of deep venous thrombosis (DVT) or pulmonary embolism (PE). In patients suspected of disseminated intravascular coagulation (DIC), D-dimers may aid in the diagnosis.

For DVT and PE, there are various scoring systems that are used to determine the a priori clinical probability of these diseases; the best-known were introduced by Wells et al (2003).

  • For a very high score, or pretest probability, a D-dimer will make little difference and anticoagulant therapy will be initiated regardless of test results, and additional testing for DVT or pulmonary embolism may be performed.
  • For a moderate or low score, or pretest probability:[1]
    • A negative D-dimer test will virtually rule out thromboembolism: the degree to which the d-dimer reduces the probability of thrombotic disease is dependent on the test properties of the specific test used in your clinical setting: most available d-dimer tests with a negative result will reduce the probability of thromboembolic disease to less than 1% if the pretest probability is less than 15-20%
    • If the D-dimer reads high, then further testing (ultrasound of the leg veins or lung scintigraphy or CT scanning) is required to confirm the presence of thrombus. Anticoagulant therapy may be started at this point or withheld until further tests confirm the diagnosis, depending on the clinical situation.

In some hospitals, they are measured by laboratories after a form is completed showing the probability score and only if the probability score is low or intermediate. This would reduce the need for unnecessary tests in those who are high-probability.[2]

Reference range

Most sampling kits have 0-300 ng/ml as normal range. Values exceeding 250, 300 or 500 ng/ml (different for various kits) are considered positive.

For patients over age 50 a value of ageX10 may be abnormal.[3][4][5]

Types of assays

  • ELISA (e.g. Vidas)
  • Latex turbidimetric assay (automated immunoassay, e.g. Roche Tina-quant, MDA D-dimer)
  • Enhanced microlatex
  • Latex-enhanced photometric
  • Whole Blood Agglutination (e.g. SimpliRED)
  • Rapid Lateral Flow (e.g. Clearview Simplify)

Principles

Fibrin degradation products (FDPs) are formed whenever fibrin is broken down by enzymes (e.g. plasmin). Determining FDPs is not considered useful, as this does not indicate whether the fibrin is part of a blood clot (or being generated as part of inflammation).

D-dimers are unique in that they are the breakdown products of a fibrin mesh that has been stabilized by Factor XIII. This factor crosslinks the E-element to two D-elements. This is the final step in the generation of a thrombus.

Plasmin is a fibrinolytic enzyme that organizes clots and breaks down the fibrin mesh. It cannot, however, break down the bonds between one E and two D units. The protein fragment thus left over is a D-dimer.

D-dimer assays rely on monoclonal antibodies to bind to this specific protein fragment. The first patented MoAb of the kind was D Dimer-3B6/22, although others have been developed.

Principles of D-dimer testing


Test Properties

Various kits have a 93-95% sensitivity and about 50% specificity in the diagnosis of thrombotic disease.[6]

  • False positive readings can be due to various causes: liver disease, high rheumatoid factor, inflammation, malignancy, trauma, pregnancy, recent surgery as well as advanced age
  • False negative readings can occur if the sample is taken either too early after thrombus formation or if testing is delayed for several days. Additionally, the presence of anti-coagulation can render the test negative because it prevents thrombus extension.
  • Likelihood ratios are derived from sensitivity and specificity to adjust pretest probability.

History

D-dimer testing was originally developed in the diagnosis of disseminated intravascular coagulation. In the 1990s, they turned out to be useful in diagnosing thromboembolic process.

References

  1. Wells PS, Anderson DR, Rodger M; et al. (2003). "Evaluation of D-dimer in the diagnosis of suspected deep-vein thrombosis". N. Engl. J. Med. 349 (13): 1227–35. doi:10.1056/NEJMoa023153. PMID 14507948.
  2. Rathbun, SW (2004). "Clinical utility of D-dimer in patients with suspected pulmonary embolism and nondiagnostic lung scans or negative CT findings". Chest (125): 851. Unknown parameter |coauthors= ignored (help); |access-date= requires |url= (help)
  3. Schouten HJ, Geersing GJ, Koek HL, Zuithoff NP, Janssen KJ, Douma RA; et al. (2013). "Diagnostic accuracy of conventional or age adjusted D-dimer cut-off values in older patients with suspected venous thromboembolism: systematic review and meta-analysis". BMJ. 346: f2492. doi:10.1136/bmj.f2492. PMC 3643284. PMID 23645857.
  4. van Es J, Mos I, Douma R, Erkens P, Durian M, Nizet T; et al. (2012). "The combination of four different clinical decision rules and an age-adjusted D-dimer cut-off increases the number of patients in whom acute pulmonary embolism can safely be excluded". Thromb Haemost. 107 (1): 167–71. doi:10.1160/TH11-08-0587. PMID 22072293.
  5. Douma RA, le Gal G, Söhne M, Righini M, Kamphuisen PW, Perrier A; et al. (2010). "Potential of an age adjusted D-dimer cut-off value to improve the exclusion of pulmonary embolism in older patients: a retrospective analysis of three large cohorts". BMJ. 340: c1475. doi:10.1136/bmj.c1475. PMID 20354012.
  6. Schrecengost JE, LeGallo RD, Boyd JC, Moons KG, Gonias SL, Rose CE Jr, Bruns DE. Comparison of diagnostic accuracies in outpatients and hospitalized patients of D-dimer testing for the evaluation of suspected pulmonary embolism. Clin Chem 2003;49:1483-90. PMID 12928229.

External links

id:D-dimer nl:D-dimeer

Template:WH Template:WS