Dimethylaniline monooxygenase [N-oxide-forming] 1 is an enzyme that in humans is encoded by the FMO1gene.[1]
Metabolic N-oxidation of the diet-derived amino-trimethylamine (TMA) is mediated by flavin-containing monooxygenase and is subject to an inherited FMO3 polymorphism in humans resulting in a small subpopulation with reduced TMA N-oxidation capacity resulting in fish odor syndrome Trimethylaminuria. Three forms of the enzyme, FMO1 found in fetal liver, FMO2 found in adult liver, and FMO3 are encoded by genes clustered in the 1q23-q25 region. Flavin-containing monooxygenases are NADPH-dependent flavoenzymes that catalyzes the oxidation of soft nucleophilic heteroatom centers in xenobiotics such as pesticides and drugs.[1]
Hines RN, Cashman JR, Philpot RM, et al. (1994). "The mammalian flavin-containing monooxygenases: molecular characterization and regulation of expression". Toxicol. Appl. Pharmacol. 125 (1): 1–6. doi:10.1006/taap.1994.1042. PMID8128486.
Cashman JR (2004). "The implications of polymorphisms in mammalian flavin-containing monooxygenases in drug discovery and development". Drug Discov. Today. 9 (13): 574–581. doi:10.1016/S1359-6446(04)03136-8. PMID15203093.
Dolphin C, Shephard EA, Povey S, et al. (1991). "Cloning, primary sequence, and chromosomal mapping of a human flavin-containing monooxygenase (FMO1)". J. Biol. Chem. 266 (19): 12379–85. PMID1712018.
Phillips IR, Dolphin CT, Clair P, et al. (1995). "The molecular biology of the flavin-containing monooxygenases of man". Chem. Biol. Interact. 96 (1): 17–32. doi:10.1016/0009-2797(94)03580-2. PMID7720101.
Lawton MP, Cashman JR, Cresteil T, et al. (1994). "A nomenclature for the mammalian flavin-containing monooxygenase gene family based on amino acid sequence identities". Arch. Biochem. Biophys. 308 (1): 254–257. doi:10.1006/abbi.1994.1035. PMID8311461.
Shephard EA, Dolphin CT, Fox MF, et al. (1993). "Localization of genes encoding three distinct flavin-containing monooxygenases to human chromosome 1q". Genomics. 16 (1): 85–89. doi:10.1006/geno.1993.1144. PMID8486388.
Hay JC, Chao DS, Kuo CS, Scheller RH (1997). "Protein interactions regulating vesicle transport between the endoplasmic reticulum and Golgi apparatus in mammalian cells". Cell. 89 (1): 149–158. doi:10.1016/S0092-8674(00)80191-9. PMID9094723.
Yeung CK, Lang DH, Thummel KE, Rettie AE (2000). "Immunoquantitation of FMO1 in human liver, kidney, and intestine". Drug Metab. Dispos. 28 (9): 1107–11. PMID10950857.
Washio T, Arisawa H, Kohsaka K, Yasuda H (2002). "Identification of human drug-metabolizing enzymes involved in the metabolism of SNI-2011". Biol. Pharm. Bull. 24 (11): 1263–1266. doi:10.1248/bpb.24.1263. PMID11725960.
Furnes B, Feng J, Sommer SS, Schlenk D (2003). "Identification of novel variants of the flavin-containing monooxygenase gene family in African Americans". Drug Metab. Dispos. 31 (2): 187–193. doi:10.1124/dmd.31.2.187. PMID12527699.
Attar M, Dong D, Ling KH, Tang-Liu DD (2003). "Cytochrome P450 2C8 and flavin-containing monooxygenases are involved in the metabolism of tazarotenic acid in humans". Drug Metab. Dispos. 31 (4): 476–481. doi:10.1124/dmd.31.4.476. PMID12642475.
Hines RN, Luo Z, Hopp KA, et al. (2003). "Genetic variability at the human FMO1 locus: significance of a basal promoter yin yang 1 element polymorphism (FMO1*6)". J. Pharmacol. Exp. Ther. 306 (3): 1210–1218. doi:10.1124/jpet.103.053686. PMID12829732.
Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–45. doi:10.1038/ng1285. PMID14702039.
Zhang J, Cashman JR (2006). "Quantitative analysis of FMO gene mRNA levels in human tissues". Drug Metab. Dispos. 34 (1): 19–26. doi:10.1124/dmd.105.006171. PMID16183778.