Human LIMP-2 has a theoretical molecular weight of 54.3 kDa and is 478 amino acids in length.[2]
Though LIMP-2 was initially discovered in 1985 by Lewis et al. from rat liver lysosomes,[3] LIMP-2 was cloned in 1992 by two groups, one isolated LIMP-2 from human metastaticpancreaticislet tumor cells, and one from rat liverlysosomal membranes.[4][5] LIMP-2 was isolated as a protein of approximate molecular weight 85 kDa, synthesized from a precursor oform of approximately 77 kDa. The weight discrepancy between its theoretical (54.3 kDa) and observed (85 kDa) is due to the presence of 10 high mannose-type N-linked oligosaccharide chains in the human form of this protein, compared to 11 in mouse and rat.[6] LIMP-2 has two hydrophobic regions, one near the N-terminus and one near the C-terminus, as well as a short isoleucine/leucine-rich cytoplasmic tail consisting of 20 amino acids that serves as the lysosomal targeting sequence.[7][8] LIMP-2 has been shown to be expressed in brain, heart, liver, lung and kidney.[6]
Function
The protein encoded by this gene is a type III glycoprotein that is located primarily in limiting membranes of lysosomes and endosomes. Studies of the similar protein in mice and rat suggested that this protein may participate in membrane transportation and the reorganization of endosomal/lysosomal compartment.[9] In rat hepatic cells, LIMP-2 exhibited a half-life for internalization and lysosomal transport of 32 min and 2.0 h, respectively, which resembled that of well-known lysosomal proteins, lamp-1 and lamp-2, albeit different amino acid sequences in their cytoplasmic tails.[10]
LIMP-2 plays other roles in other organs. Characteristic tubular proteinuria observed in LIMP-2 knockout mice has been shown to be due to a failure of in lysosomal/endosomal fusion, thus proteins reabsorbed in the proximal tubule of the kidney are not properly proteolyzed, causing the proteinuria.[13] Deficiency of LIMP-2 in mice was also reported to impair cell membrane transport processes and cause pelvic junction obstruction, deafness, and peripheral neuropathy.[14]
↑Fujita H, Takata Y, Kono A, Tanaka Y, Takahashi T, Himeno M, Kato K (Apr 1992). "Isolation and sequencing of a cDNA clone encoding the 85 kDa human lysosomal sialoglycoprotein (hLGP85) in human metastatic pancreas islet tumor cells". Biochemical and Biophysical Research Communications. 184 (2): 604–11. doi:10.1016/0006-291X(92)90632-U. PMID1374238.
↑Akasaki K, Kinoshita H, Fukuzawa M, Maeda M, Yamaguchi Y, Furuno K, Tsuji H (Jan 1992). "Isolation and characterization of a novel membrane glycoprotein of 85,000 molecular weight from rat liver lysosomes". Chemical & Pharmaceutical Bulletin. 40 (1): 170–3. doi:10.1248/cpb.40.170. PMID1576668.
↑ 6.06.1Tabuchi N, Akasaki K, Sasaki T, Kanda N, Tsuji H (Oct 1997). "Identification and characterization of a major lysosomal membrane glycoprotein, LGP85/LIMP II in mouse liver". Journal of Biochemistry. 122 (4): 756–63. doi:10.1093/oxfordjournals.jbchem.a021820. PMID9399579.
↑Ogata S, Fukuda M (Feb 1994). "Lysosomal targeting of Limp II membrane glycoprotein requires a novel Leu-Ile motif at a particular position in its cytoplasmic tail". The Journal of Biological Chemistry. 269 (7): 5210–7. PMID8106503.
↑Sandoval IV, Arredondo JJ, Alcalde J, Gonzalez Noriega A, Vandekerckhove J, Jimenez MA, Rico M (Mar 1994). "The residues Leu(Ile)475-Ile(Leu, Val, Ala)476, contained in the extended carboxyl cytoplasmic tail, are critical for targeting of the resident lysosomal membrane protein LIMP II to lysosomes". The Journal of Biological Chemistry. 269 (9): 6622–31. PMID7509809.
↑Akasaki K, Michihara A, Fukuzawa M, Kinoshita H, Tsuji H (Sep 1994). "Cycling of an 85-kDa lysosomal membrane glycoprotein between the cell surface and lysosomes in cultured rat hepatocytes". Journal of Biochemistry. 116 (3): 670–6. PMID7852289.
↑Schroen B, Heymans S, Sharma U, Blankesteijn WM, Pokharel S, Cleutjens JP, Porter JG, Evelo CT, Duisters R, van Leeuwen RE, Janssen BJ, Debets JJ, Smits JF, Daemen MJ, Crijns HJ, Bornstein P, Pinto YM (Sep 2004). "Thrombospondin-2 is essential for myocardial matrix integrity: increased expression identifies failure-prone cardiac hypertrophy". Circulation Research. 95 (5): 515–22. doi:10.1161/01.RES.0000141019.20332.3e. PMID15284191.
↑Desmond MJ, Lee D, Fraser SA, Katerelos M, Gleich K, Martinello P, Li YQ, Thomas MC, Michelucci R, Cole AJ, Saftig P, Schwake M, Stapleton D, Berkovic SF, Power DA (Jun 2011). "Tubular proteinuria in mice and humans lacking the intrinsic lysosomal protein SCARB2/Limp-2". American Journal of Physiology. Renal Physiology. 300 (6): F1437–47. doi:10.1152/ajprenal.00015.2011. PMID21429972.
↑Gamp AC, Tanaka Y, Lüllmann-Rauch R, Wittke D, D'Hooge R, De Deyn PP, Moser T, Maier H, Hartmann D, Reiss K, Illert AL, von Figura K, Saftig P (Mar 2003). "LIMP-2/LGP85 deficiency causes ureteric pelvic junction obstruction, deafness and peripheral neuropathy in mice". Human Molecular Genetics. 12 (6): 631–46. doi:10.1093/hmg/ddg062. PMID12620969.
↑Balreira A, Gaspar P, Caiola D, Chaves J, Beirão I, Lima JL, Azevedo JE, Miranda MC (Jul 2008). "A nonsense mutation in the LIMP-2 gene associated with progressive myoclonic epilepsy and nephrotic syndrome". Human Molecular Genetics. 17 (14): 2238–43. doi:10.1093/hmg/ddn124. PMID18424452.
↑Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, Koike S (Jul 2009). "Scavenger receptor B2 is a cellular receptor for enterovirus 71". Nature Medicine. 15 (7): 798–801. doi:10.1038/nm.1992. PMID19543282.
Further reading
Eskelinen EL, Tanaka Y, Saftig P (Mar 2003). "At the acidic edge: emerging functions for lysosomal membrane proteins". Trends in Cell Biology. 13 (3): 137–45. doi:10.1016/S0962-8924(03)00005-9. PMID12628346.
Sandoval IV, Arredondo JJ, Alcalde J, Gonzalez Noriega A, Vandekerckhove J, Jimenez MA, Rico M (Mar 1994). "The residues Leu(Ile)475-Ile(Leu, Val, Ala)476, contained in the extended carboxyl cytoplasmic tail, are critical for targeting of the resident lysosomal membrane protein LIMP II to lysosomes". The Journal of Biological Chemistry. 269 (9): 6622–31. PMID7509809.
Calvo D, Dopazo J, Vega MA (Jan 1995). "The CD36, CLA-1 (CD36L1), and LIMPII (CD36L2) gene family: cellular distribution, chromosomal location, and genetic evolution". Genomics. 25 (1): 100–6. doi:10.1016/0888-7543(95)80114-2. PMID7539776.
Crombie R, Silverstein R (Feb 1998). "Lysosomal integral membrane protein II binds thrombospondin-1. Structure-function homology with the cell adhesion molecule CD36 defines a conserved recognition motif". The Journal of Biological Chemistry. 273 (9): 4855–63. doi:10.1074/jbc.273.9.4855. PMID9478926.
Harris RA, Yang A, Stein RC, Lucy K, Brusten L, Herath A, Parekh R, Waterfield MD, O'Hare MJ, Neville MA, Page MJ, Zvelebil MJ (Feb 2002). "Cluster analysis of an extensive human breast cancer cell line protein expression map database". Proteomics. 2 (2): 212–23. doi:10.1002/1615-9861(200202)2:2<212::AID-PROT212>3.0.CO;2-H. PMID11840567.
Wistow G, Bernstein SL, Wyatt MK, Fariss RN, Behal A, Touchman JW, Bouffard G, Smith D, Peterson K (Jun 2002). "Expressed sequence tag analysis of human RPE/choroid for the NEIBank Project: over 6000 non-redundant transcripts, novel genes and splice variants". Molecular Vision. 8: 205–20. PMID12107410.
Kuronita T, Eskelinen EL, Fujita H, Saftig P, Himeno M, Tanaka Y (Nov 2002). "A role for the lysosomal membrane protein LGP85 in the biogenesis and maintenance of endosomal and lysosomal morphology". Journal of Cell Science. 115 (Pt 21): 4117–31. doi:10.1242/jcs.00075. PMID12356916.
Rodionov DG, Höning S, Silye A, Kongsvik TL, von Figura K, Bakke O (Dec 2002). "Structural requirements for interactions between leucine-sorting signals and clathrin-associated adaptor protein complex AP3". The Journal of Biological Chemistry. 277 (49): 47436–43. doi:10.1074/jbc.M207149200. PMID12370188.
Gamp AC, Tanaka Y, Lüllmann-Rauch R, Wittke D, D'Hooge R, De Deyn PP, Moser T, Maier H, Hartmann D, Reiss K, Illert AL, von Figura K, Saftig P (Mar 2003). "LIMP-2/LGP85 deficiency causes ureteric pelvic junction obstruction, deafness and peripheral neuropathy in mice". Human Molecular Genetics. 12 (6): 631–46. doi:10.1093/hmg/ddg062. PMID12620969.
Zhang H, Li XJ, Martin DB, Aebersold R (Jun 2003). "Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry". Nature Biotechnology. 21 (6): 660–6. doi:10.1038/nbt827. PMID12754519.
Eckhardt ER, Cai L, Shetty S, Zhao Z, Szanto A, Webb NR, Van der Westhuyzen DR (Feb 2006). "High density lipoprotein endocytosis by scavenger receptor SR-BII is clathrin-dependent and requires a carboxyl-terminal dileucine motif". The Journal of Biological Chemistry. 281 (7): 4348–53. doi:10.1074/jbc.M513154200. PMID16368683.
Gupta SN, Kloster MM, Rodionov DG, Bakke O (Jun 2006). "Re-routing of the invariant chain to the direct sorting pathway by introduction of an AP3-binding motif from LIMP II". European Journal of Cell Biology. 85 (6): 457–67. doi:10.1016/j.ejcb.2006.02.001. PMID16542748.
Tserentsoodol N, Gordiyenko NV, Pascual I, Lee JW, Fliesler SJ, Rodriguez IR (2006). "Intraretinal lipid transport is dependent on high density lipoprotein-like particles and class B scavenger receptors". Molecular Vision. 12: 1319–33. PMID17110915.