Acute promyelocytic leukemia pathophysiology

Revision as of 17:18, 13 August 2015 by Jyostna Chouturi (talk | contribs)
Jump to navigation Jump to search

Acute promyelocytic leukemia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Acute promyelocytic leukemia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Other Imaging Studies

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary PreventionSurgery

Secondary PreventionSurgery

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Acute promyelocytic leukemia pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Acute promyelocytic leukemia pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Acute promyelocytic leukemia pathophysiology

CDC on Acute promyelocytic leukemia pathophysiology

Acute promyelocytic leukemia pathophysiology in the news

Blogs on Acute promyelocytic leukemia pathophysiology

Directions to Hospitals Treating Acute promyelocytic leukemia

Risk calculators and risk factors for Acute promyelocytic leukemia pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Pathophysiology

Acute promyelocytic leukemia is characterized by chromosomal translocation involving the retinoic acid receptor-alpha gene on chromosome 17 (RARα). In 95% of cases of APL, retinoic acid receptor-alpha (RARα) gene on chromosome 17 is involved in a reciprocal translocation with the promyelocytic leukemia gene (PML) on chromosome 15, a translocation denoted as t(15;17)(q22;q12).

Four other gene rearrangements have been described in APL fusing RARα to promyelocytic leukemia zinc finger (PLZF), nucleophosmin (NPM), nuclear matrix associated (NUMA), or signal transducer and activator of transcription 5b (STAT5B) genes.

The resultant fusion proteins disrupt the function of RARα which blocks the normal maturation of granulocytes. Although the chromosomal translocation involving RARα is believed to be the initiating event, additional mutations are required for the development of leukemia.

References

Template:WH Template:WS