WBR0936

Revision as of 04:13, 12 December 2013 by William J Gibson (talk | contribs)
Jump to navigation Jump to search
 
Author PageAuthor::William J Gibson
Exam Type ExamType::USMLE Step 1
Main Category MainCategory::Biochemistry
Sub Category SubCategory::Endocrine, SubCategory::Musculoskeletal/Rheumatology
Prompt [[Prompt::A scientist is studying the mechanism of exercise-induced insulin sensitivity in diabetic patients. A biopsy of the vastus lateralis muscle is obtained from the left leg at rest. 3-6 weeks later, the subjects performed 45-60 minutes of cycling at 70% VO2 max, and immediately thereafter a biopsy was obtained from the right vastus lateralis muscle. The investigator performs immunohistochemistry of the obtained tissues. Which of the following will demonstrate increased localization to the plasma membrane?]]
Answer A AnswerA::GLUT1
Answer A Explanation AnswerAExp::Incorrect: GLUT1 is expressed in erythrocytes and the brain. It does not translocate to the cell membrane with exercise.
Answer B AnswerB::GLUT2
Answer B Explanation AnswerBExp::Incorrect: GLUT2 is a bidirectional glucose transporter that is expressed in pancreatic islet cells, the liver and the kidney. It does not translocate to the cell membrane with exercise.
Answer C AnswerC::GLUT3
Answer C Explanation AnswerCExp::Incorrect: GLUT3 is primarily expressed in neurons and does not translocate to the cell membrane with exercise.
Answer D AnswerD::GLUT4
Answer D Explanation AnswerDExp::Correct: GLUT4 is an insulin-responsive glucose transporter found in adipose tissue and muscle that translocates to the cell membrane upon exercise.
Answer E AnswerE::GLUT5
Answer E Explanation AnswerEExp::Incorrect: GLUT5 is a fructose transporter expressed on the apical border of enterocytes in the small intestine. It does not translocate to the cell membrane with exercise.
Right Answer RightAnswer::D
Explanation [[Explanation::Educational objective: GLUT4 is an insulin-responsive glucose transporter found in adipose tissue and muscle that translocates to the cell membrane upon exercise.

References:

First Aid 2013 page 288

First Aid 2012 page 315

Lund S, Holman GD, Schmitz O, Pedersen O. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci USA. 1995;92(13):5817-21.
Educational Objective:
References: ]]

Approved Approved::Yes
Keyword WBRKeyword::Muscle, WBRKeyword::Insulin, WBRKeyword::Glucose, WBRKeyword::Receptor, WBRKeyword::Exercise, WBRKeyword::Transporter
Linked Question Linked::
Order in Linked Questions LinkedOrder::