Cardiogenic shock pathophysiology
Cardiogenic Shock Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Cardiogenic shock pathophysiology On the Web |
American Roentgen Ray Society Images of Cardiogenic shock pathophysiology |
Risk calculators and risk factors for Cardiogenic shock pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: João André Alves Silva, M.D. [2]
Overview
Cardiogenic shock is a clinical condition, defined as a state of systemic hypoperfusion originated in cardiac failure, in the presence of adequate intravascular volume, typically followed by hypotension, which results in the insufficient ability to meet oxygen and nutrient demands of organs and other peripheral tissues.[1] It may range from mild to severe hypoperfusion and may be defined in terms of hemodynamic parameters, which according to most studies, means a state in which systolic blood pressure is persistently < 90 mm Hg or < 80 mm Hg, for longer than 1 hour, with adequate or elevated left and right ventricular filling pressures that do not respond to isolated fluid administration, is secondary to cardiac failure and occurs with signs of hypoperfusion (oliguria, cool extremities, cyanosis and altered mental status) or a cardiac index of < 2.2 L/min/m² (on inotropic, vasopressor or circulatory device support) or < 1.8-2.2 L/min/m² (off support) and pulmonary artery wedge pressure > 18 mm Hg.[2][3][4][5][6][7][8] Despite the many possible causes for this cadiac failure, the most common is left ventricular failure in the setting of myocardial infarction.[9] In the presence of cardiogenic shock develops a pathological cycle in which the ischemia, the initial aggression, leads to myocardial dysfunction. This will affect parameters like the cardiac output, stroke volume and myocardial perfusion thereby worsening the ischemia. The body will then initiate a series of compensatory mechanisms, such as heart sympathetic stimulation and activation of the renin/angiotensin/aldosterone system, trying to overcome the cardiac aggression, however, this will ultimately lead to a downward spiral worsening of the ischemia. Inflammatory mediators, originated in the infarcted area, will also intervene at some point causing myocardial muscle depression decreasing contractility and worsening hypotension. Lactic acidosis will also develop, resulting from the poor tissue perfusion, that causes a shift in the metabolism to glycolysis, which will also depress the myocardium, thereby worsening the clinical scenario.[10][11]
Pathophysiology
References
- ↑ Hasdai, David. (2002). Cardiogenic shock : diagnosis and treatmen. Totowa, N.J.: Humana Press. ISBN 1-58829-025-5.
- ↑ Hochman, Judith (2009). Cardiogenic shock. Chichester, West Sussex, UK Hoboken, NJ: Wiley-Blackwell. ISBN 1405179260.
- ↑ Goldberg, Robert J.; Gore, Joel M.; Alpert, Joseph S.; Osganian, Voula; de Groot, Jacques; Bade, Jurgen; Chen, Zuoyao; Frid, David; Dalen, James E. (1991). "Cardiogenic Shock after Acute Myocardial Infarction". New England Journal of Medicine. 325 (16): 1117–1122. doi:10.1056/NEJM199110173251601. ISSN 0028-4793.
- ↑ Goldberg, Robert J.; Samad, Navid A.; Yarzebski, Jorge; Gurwitz, Jerry; Bigelow, Carol; Gore, Joel M. (1999). "Temporal Trends in Cardiogenic Shock Complicating Acute Myocardial Infarction". New England Journal of Medicine. 340 (15): 1162–1168. doi:10.1056/NEJM199904153401504. ISSN 0028-4793.
- ↑ Menon, V.; Slater, JN.; White, HD.; Sleeper, LA.; Cocke, T.; Hochman, JS. (2000). "Acute myocardial infarction complicated by systemic hypoperfusion without hypotension: report of the SHOCK trial registry". Am J Med. 108 (5): 374–80. PMID 10759093. Unknown parameter
|month=
ignored (help) - ↑ Hasdai, D.; Holmes, DR.; Califf, RM.; Thompson, TD.; Hochman, JS.; Pfisterer, M.; Topol, EJ. (1999). "Cardiogenic shock complicating acute myocardial infarction: predictors of death. GUSTO Investigators. Global Utilization of Streptokinase and Tissue-Plasminogen Activator for Occluded Coronary Arteries". Am Heart J. 138 (1 Pt 1): 21–31. PMID 10385759. Unknown parameter
|month=
ignored (help) - ↑ Fincke, R.; Hochman, JS.; Lowe, AM.; Menon, V.; Slater, JN.; Webb, JG.; LeJemtel, TH.; Cotter, G. (2004). "Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry". J Am Coll Cardiol. 44 (2): 340–8. doi:10.1016/j.jacc.2004.03.060. PMID 15261929. Unknown parameter
|month=
ignored (help) - ↑ Dzavik, V.; Cotter, G.; Reynolds, H. R.; Alexander, J. H.; Ramanathan, K.; Stebbins, A. L.; Hathaway, D.; Farkouh, M. E.; Ohman, E. M.; Baran, D. A.; Prondzinsky, R.; Panza, J. A.; Cantor, W. J.; Vered, Z.; Buller, C. E.; Kleiman, N. S.; Webb, J. G.; Holmes, D. R.; Parrillo, J. E.; Hazen, S. L.; Gross, S. S.; Harrington, R. A.; Hochman, J. S. (2007). "Effect of nitric oxide synthase inhibition on haemodynamics and outcome of patients with persistent cardiogenic shock complicating acute myocardial infarction: a phase II dose-ranging study". European Heart Journal. 28 (9): 1109–1116. doi:10.1093/eurheartj/ehm075. ISSN 0195-668X.
- ↑ Hochman, Judith S; Buller, Christopher E; Sleeper, Lynn A; Boland, Jean; Dzavik, Vladimir; Sanborn, Timothy A; Godfrey, Emilie; White, Harvey D; Lim, John; LeJemtel, Thierry (2000). "Cardiogenic shock complicating acute myocardial infarction—etiologies, management and outcome: a report from the SHOCK Trial Registry". Journal of the American College of Cardiology. 36 (3): 1063–1070. doi:10.1016/S0735-1097(00)00879-2. ISSN 0735-1097.
- ↑ Hasdai, David. (2002). Cardiogenic shock : diagnosis and treatmen. Totowa, N.J.: Humana Press. ISBN 1-58829-025-5.
- ↑ Hollenberg SM, Kavinsky CJ, Parrillo JE (1999). "Cardiogenic shock". Ann Intern Med. 131 (1): 47–59. PMID 10391815.