Cyclosporiasis pathophysiology

Revision as of 14:21, 18 September 2014 by Joao Silva (talk | contribs)
Jump to navigation Jump to search

Cyclosporiasis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Cyclosporiasis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X-Ray

CT Scan

MRI

Ultrasound

Treatment

Medical Therapy

Primary Prevention

Case Studies

Case #1

Cyclosporiasis pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

slides

Images

American Roentgen Ray Society Images of Cyclosporiasis pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Cyclosporiasis pathophysiology

on Cyclosporiasis pathophysiology

Cyclosporiasis pathophysiology in the news

Blogs on Cyclosporiasis pathophysiology

Directions to Hospitals Treating Cyclosporiasis

Risk calculators and risk factors for Cyclosporiasis pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: João André Alves Silva, M.D. [2]

Overview

Fresh produce and water can serve as vehicles for transmission and the sporulated oocysts are ingested (in contaminated food or water). The oocysts excyst in the gastrointestinal tract, freeing the sporozoites which invade the epithelial cells of the small intestine.

Pathogenesis

When freshly passed in stools, the oocyst is not infective (thus, direct fecal-oral transmission cannot occur; this differentiates Cyclospora from another important coccidian parasite, Cryptosporidium). In the environment, sporulation occurs after days or weeks at temperatures between 22°C to 32°C, resulting in division of the sporont into two sporocysts, each containing two elongate sporozoites. Fresh produce and water can serve as vehicles for transmission and the sporulated oocysts are ingested (in contaminated food or water). The oocysts excyst in the gastrointestinal tract, freeing the sporozoites which invade the epithelial cells of the small intestine. Inside the cells they undergo asexual multiplication and sexual development to mature into oocysts, which will be shed in stools. The potential mechanisms of contamination of food and water are still under investigation.

Life cycle of Cyclosporiasis- Center for Disease Control and Prevention(CDC)[1]

Various chemicals in the host's gastrointestinal tract cause the oocysts to excyst and release sporozoites; generally, two are observed per oocyst. After these sporozoites invade the epithelial cells, they undergo merogony, a form of asexual reproduction that results in many daughter merozoites. These daughter cells may either infect new host cells and initiate yet another round of merogony, or they can take on a sexual track via gametogony: daughter merozoites become male macrogamonts — which form many microgametes — and female macrogamonts. After fertilization has occurred via male microgamete fusion with female macrogamont, the zygote matures into an oocyst and ruptures the host cell, from which point it is passed with the stool. The oocysts that are passed are not, however, immediately infectious. Sporulation can take anywhere from one to several weeks, meaning that person-to-person transmission is not a likely problem. This differentiates C. cayentanensis from Cryptosporidium parvum — a closely related organism that causes a similar disease — since C. parvum oocysts are immediately infectious upon release from the host.

Transmission

Microscopic Pathology

References

  1. "Center for Disease Control and Prevention (CDC)".

Template:WH Template:WS