Irinotecan

Revision as of 20:06, 11 February 2015 by Alberto Plate (talk | contribs)
Jump to navigation Jump to search

Irinotecan
Black Box Warning
Adult Indications & Dosage
Pediatric Indications & Dosage
Contraindications
Warnings & Precautions
Adverse Reactions
Drug Interactions
Use in Specific Populations
Administration & Monitoring
Overdosage
Pharmacology
Clinical Studies
How Supplied
Images
Patient Counseling Information
Precautions with Alcohol
Brand Names
Look-Alike Names

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Alberto Plate [2]

Disclaimer

WikiDoc MAKES NO GUARANTEE OF VALIDITY. WikiDoc is not a professional health care provider, nor is it a suitable replacement for a licensed healthcare provider. WikiDoc is intended to be an educational tool, not a tool for any form of healthcare delivery. The educational content on WikiDoc drug pages is based upon the FDA package insert, National Library of Medicine content and practice guidelines / consensus statements. WikiDoc does not promote the administration of any medication or device that is not consistent with its labeling. Please read our full disclaimer here.

Black Box Warning

WARNING: DIARRHEA AND MYELOSUPPRESSION
See full prescribing information for complete Boxed Warning.
Condition Name:
  • Early and late forms of diarrhea can occur. Early diarrhea may be accompanied by cholinergic symptoms which may be prevented or ameliorated by atropine. Late diarrhea can be life threatening and should be treated promptly with loperamide. Monitor patients with diarrhea and give fluid and electrolytes as needed. Institute antibiotic therapy if patients develop ileus, fever, or severe neutropenia. Interrupt CAMPTOSAR and reduce subsequent doses if severe diarrhea occurs.
  • Severe myelosuppression may occur.

Overview

Irinotecan is an antineoplastic agent and topoisomerase I inhibitor that is FDA approved for the treatment of metastatic colon carcinoma and rectum carcinoma. There is a Black Box Warning for this drug as shown here. Common adverse reactions include nausea, vomiting, abdominal pain, diarrhea, constipation, anorexia, mucositis, neutropenia, leukopenia (including lymphocytopenia), anemia, thrombocytopenia, asthenia, pain, fever, infection, abnormal bilirubin, alopecia.

Adult Indications and Dosage

FDA-Labeled Indications and Dosage (Adult)

Colorectal Cancer Combination Regimens 1 and 2

  • Administer CAMPTOSAR as a 90-minute intravenous infusion followed by LV and 5-FU. The currently recommended regimens are shown in Table 1.
  • A reduction in the starting dose by one dose level of CAMPTOSAR may be considered for patients with any of the following conditions: prior pelvic/abdominal radiotherapy, performance status of 2, or increased bilirubin levels. Dosing for patients with bilirubin >2 mg/dL cannot be recommended because there is insufficient information to recommend a dose in these patients.

Dosing for patients with bilirubin >2 mg/dL cannot be recommended because there is insufficient information to recommend a dose in these patients.

Dose Modification

  • Based on recommended dose levels described in Table 1, Combination Regimens of CAMPTOSAR and Dose Modifications, subsequent doses should be adjusted as suggested in Table 2, Recommended Dose Modifications for Combination Regimens. All dose modifications should be based on the worst preceding toxicity.

Colorectal Single Agent Regimens 1 and 2

  • Administer CAMPTOSAR as a 90-minute intravenous infusion. The currently recommended regimens are shown in Table 3.
  • A reduction in the starting dose by one dose level of CAMPTOSAR may be considered for patients with any of the following conditions: prior pelvic/abdominal radiotherapy, performance status of 2, or increased bilirubin levels. Dosing for patients with bilirubin >2 mg/dL cannot be recommended because there is insufficient information to recommend a dose in these patients.

Dose Modifications

  • Based on recommended dose-levels described in Table 3, Single-Agent Regimens of CAMPTOSAR and Dose Modifications, subsequent doses should be adjusted as suggested in Table 4, Recommended Dose Modifications for Single-Agent Schedules. All dose modifications should be based on the worst preceding toxicity.

Dosage in Patients with Reduced UGT1A1 Activity

  • When administered in combination with other agents, or as a single-agent, a reduction in the starting dose by at least one level of CAMPTOSAR should be considered for patients known to be homozygous for the UGT1A1*28 allele. However, the precise dose reduction in this patient population is not known, and subsequent dose modifications should be considered based on individual patient tolerance to treatment (see Tables 1–4).

Premedication

  • It is recommended that patients receive premedication with antiemetic agents. In clinical studies of the weekly dosage schedule, the majority of patients received 10 mg of dexamethasone given in conjunction with another type of antiemetic agent, such as a 5-HT3 blocker (e.g., ondansetron or granisetron). Antiemetic agents should be given on the day of treatment, starting at least 30 minutes before administration of CAMPTOSAR. Physicians should also consider providing patients with an antiemetic regimen (e.g., prochlorperazine) for subsequent use as needed. A similar antiemetic regimen should be used with Camptosar in combination therapy.
  • Prophylactic or therapeutic administration of atropine should be considered in patients experiencing cholinergic symptoms.

Preparation of Infusion Solution

  • Inspect vial contents for particulate matter and discoloration and repeat inspection when drug product is withdrawn from vial into syringe.
  • CAMPTOSAR Injection 20 mg/mL is intended for single use only and any unused portion should be discarded.
  • CAMPTOSAR Injection must be diluted prior to infusion. CAMPTOSAR should be diluted in 5% Dextrose Injection, USP, (preferred) or 0.9% Sodium Chloride Injection, USP, to a final concentration range of 0.12 mg/mL to 2.8 mg/mL. Other drugs should not be added to the infusion solution.
  • The solution is physically and chemically stable for up to 24 hours at room temperature and in ambient fluorescent lighting. Solutions diluted in 5% Dextrose Injection, USP, and stored at refrigerated temperatures (approximately 2° to 8°C, 36° to 46°F), and protected from light are physically and chemically stable for 48 hours. Refrigeration of admixtures using 0.9% Sodium Chloride Injection, USP, is not recommended due to a low and sporadic incidence of visible particulates. Freezing CAMPTOSAR and admixtures of CAMPTOSAR may result in precipitation of the drug and should be avoided.
  • The CAMPTOSAR Injection solution should be used immediately after reconstitution as it contains no antibacterial preservative. Because of possible microbial contamination during dilution, it is advisable to use the admixture prepared with 5% Dextrose Injection, USP, within 24 hours if refrigerated (2° to 8°C, 36° to 46°F). In the case of admixtures prepared with 5% Dextrose Injection, USP, or Sodium Chloride Injection, USP, the solutions should be used within 4 hours if kept at room temperature. If reconstitution and dilution are performed under strict aseptic conditions (e.g., on Laminar Air Flow bench), CAMPTOSAR Injection solution should be used (infusion completed) within 12 hours at room temperature or 24 hours if refrigerated (2° to 8°C, 36° to 46°F).

Safe Handling

  • Care should be exercised in the handling and preparation of infusion solutions prepared from CAMPTOSAR Injection. The use of gloves is recommended. If a solution of CAMPTOSAR contacts the skin, wash the skin immediately and thoroughly with soap and water. If CAMPTOSAR contacts the mucous membranes, flush thoroughly with water. Several published guidelines for handling and disposal of anticancer agents are available.

Extravasation

  • Care should be taken to avoid extravasation, and the infusion site should be monitored for signs of inflammation. Should extravasation occur, flushing the site with sterile water and applications of ice are recommended.

Off-Label Use and Dosage (Adult)

Guideline-Supported Use

There is limited information regarding Off-Label Guideline-Supported Use of Irinotecan in adult patients.

Non–Guideline-Supported Use

There is limited information regarding Off-Label Non–Guideline-Supported Use of Irinotecan in adult patients.

Pediatric Indications and Dosage

FDA-Labeled Indications and Dosage (Pediatric)

There is limited information regarding Irinotecan FDA-Labeled Indications and Dosage (Pediatric) in the drug label.

Off-Label Use and Dosage (Pediatric)

Guideline-Supported Use

There is limited information regarding Off-Label Guideline-Supported Use of Irinotecan in pediatric patients.

Non–Guideline-Supported Use

There is limited information regarding Off-Label Non–Guideline-Supported Use of Irinotecan in pediatric patients.

Contraindications

  • CAMPTOSAR Injection is contraindicated in patients with a known hypersensitivity to the drug or its excipients.

Warnings

WARNING: DIARRHEA AND MYELOSUPPRESSION
See full prescribing information for complete Boxed Warning.
Condition Name:
  • Early and late forms of diarrhea can occur. Early diarrhea may be accompanied by cholinergic symptoms which may be prevented or ameliorated by atropine. Late diarrhea can be life threatening and should be treated promptly with loperamide. Monitor patients with diarrhea and give fluid and electrolytes as needed. Institute antibiotic therapy if patients develop ileus, fever, or severe neutropenia. Interrupt CAMPTOSAR and reduce subsequent doses if severe diarrhea occurs.
  • Severe myelosuppression may occur.

Diarrhea and Cholinergic Reactions

  • Early diarrhea (occurring during or shortly after infusion of CAMPTOSAR) is usually transient and infrequently severe. It may be accompanied by cholinergic symptoms of rhinitis, increased salivation, miosis, lacrimation, diaphoresis, flushing, and intestinal hyperperistalsis that can cause abdominal cramping. Bradycardia may also occur. Early diarrhea and other cholinergic symptoms may be prevented or treated. Consider prophylactic or therapeutic administration of 0.25 mg to 1 mg of intravenous or subcutaneous atropine (unless clinically contraindicated). These symptoms are expected to occur more frequently with higher irinotecan doses.
  • Late diarrhea (generally occurring more than 24 hours after administration of CAMPTOSAR) can be life threatening since it may be prolonged and may lead to dehydration, electrolyte imbalance, or sepsis. Grade 3–4 late diarrhea occurred in 23–31% of patients receiving weekly dosing. In the clinical studies, the median time to the onset of late diarrhea was 5 days with 3-week dosing and 11 days with weekly dosing. *Late diarrhea can be complicated by colitis, ulceration, bleeding, ileus, obstruction, and infection. Cases of megacolon and intestinal perforation have been reported. Patients should have loperamide readily available to begin treatment for late diarrhea. Begin loperamide at the first episode of poorly formed or loose stools or the earliest onset of bowel movements more frequent than normal. One dosage regimen for loperamide is 4 mg at the first onset of late diarrhea and then 2 mg every 2 hours until the patient is diarrhea-free for at least 12 hours. Loperamide is not recommended to be used for more than 48 consecutive hours at these doses, because of the risk of paralytic ileus. During the night, the patient may take 4 mg of loperamide every 4 hours. Monitor and replace fluid and electrolytes. Use antibiotic support for ileus, fever, or severe neutropenia. Subsequent weekly chemotherapy treatments should be delayed in patients until return of pretreatment bowel function for at least 24 hours without anti-diarrhea medication. Patients must not be treated with CAMPTOSAR until resolution of the bowel obstruction. If grade 2, 3, or 4 late diarrhea recurs, subsequent doses of CAMPTOSAR should be decreased.
  • Avoid diuretics or laxatives in patients with diarrhea.

Myelosuppression

  • Deaths due to sepsis following severe neutropenia have been reported in patients treated with CAMPTOSAR. In the clinical studies evaluating the weekly dosage schedule, neutropenic fever (concurrent NCI grade 4 neutropenia and fever of grade 2 or greater) occurred in 3% of the patients; 6% of patients received G-CSF for the treatment of neutropenia. Manage febrile neutropenia promptly with antibiotic support. Hold CAMPTOSAR if neutropenic fever occurs or if the absolute neutrophil count drops <1000/mm3. After recovery to an absolute neutrophil count ≥1000/mm3, subsequent doses of CAMPTOSAR should be reduced.
  • When evaluated in the trials of weekly administration, the frequency of grade 3 and 4 neutropenia was higher in patients who received previous pelvic/abdominal irradiation than in those who had not received such irradiation (48% [13/27] versus 24% [67/277]; p=0.04). Patients who have previously received pelvic/abdominal irradiation are at increased risk of severe myelosuppression following the administration of CAMPTOSAR. Based on sparse available data, the concurrent administration of CAMPTOSAR with irradiation is not recommended.
  • Patients with baseline serum total bilirubin levels of 1.0 mg/dL or more also had a greater likelihood of experiencing first-cycle grade 3 or 4 neutropenia than those with bilirubin levels that were less than 1.0 mg/dL (50% [19/38] versus 18% [47/266]; p<0.001). Patients with deficient glucuronidation of bilirubin, such as those with Gilbert's syndrome, may be at greater risk of myelosuppression when receiving therapy with CAMPTOSAR.

Patients With Reduced UGT1A1 Activity

  • Individuals who are homozygous for the UGT1A1*28 allele (UGT1A1 7/7 genotype) are at increased risk for neutropenia following initiation of CAMPTOSAR treatment.
  • In a study of 66 patients who received single-agent CAMPTOSAR (350 mg/m2 once-every-3-weeks), the incidence of grade 4 neutropenia in patients homozygous for the UGT1A1*28 allele was 50%, and in patients heterozygous for this allele (UGT1A1 6/7 genotype) the incidence was 12.5%. No grade 4 neutropenia was observed in patients homozygous for the wild-type allele (UGT1A1 6/6 genotype).
  • In a prospective study (n=250) to investigate the role of UGT1A1*28 polymorphism in the development of toxicity in patients treated with CAMPTOSAR (180 mg/m2) in combination with infusional 5-FU/LV, the incidence of grade 4 neutropenia in patients homozygous for the UGT1A1*28 allele was 4.5%, and in patients heterozygous for this allele the incidence was 5.3%. Grade 4 neutropenia was observed in 1.8% of patients homozygous for the wild-type allele.
  • In another study in which 109 patients were treated with CAMPTOSAR (100–125 mg/m2) in combination with bolus 5-FU/LV, the incidence of grade 4 neutropenia in patients homozygous for the UGT1A1*28 allele was 18.2%, and in patients heterozygous for this allele the incidence was 11.1%. Grade 4 neutropenia was observed in 6.8% of patients homozygous for the wild-type allele.
  • When administered in combination with other agents or as a single-agent, a reduction in the starting dose by at least one level of CAMPTOSAR should be considered for patients known to be homozygous for the UGT1A1*28 allele. However, the precise dose reduction in this patient population is not known and subsequent dose modifications should be considered based on individual patient tolerance to treatment.
    • UGT1A1 Testing:
      • A laboratory test is available to determine the UGT1A1 status of patients. Testing can detect the UGT1A1 6/6, 6/7 and 7/7 genotypes.

Hypersensitivity

Renal Impairment/Renal Failure

Pulmonary Toxicity

  • Interstitial Pulmonary Disease (IPD)-like events, including fatalities, have occurred in patients receiving irinotecan (in combination and as monotherapy). Risk factors include pre-existing lung disease, use of pneumotoxic drugs, radiation therapy, and colony stimulating factors. Patients with risk factors should be closely monitored for respiratory symptoms before and during CAMPTOSAR therapy. In Japanese studies, a reticulonodular pattern on chest x-ray was observed in a small percentage of patients. New or progressive, dyspnea, cough, and fever should prompt interruption of chemotherapy, pending diagnostic evaluation. If IPD is diagnosed, CAMPTOSAR and other chemotherapy should be discontinued and appropriate treatment instituted as needed.

Toxicity of the 5 Day Regimen

  • Outside of a well-designed clinical study, CAMPTOSAR Injection should not be used in combination with a regimen of 5-FU/LV administered for 4–5 consecutive days every 4 weeks because of reports of increased toxicity, including toxic deaths. CAMPTOSAR should be used as recommended in Table 2.

Increased Toxicity in Patients with Performance Status 2

  • In patients receiving either irinotecan/5-FU/LV or 5-FU/LV in the clinical trials, higher rates of hospitalization, neutropenic fever, thromboembolism, first-cycle treatment discontinuation, and early deaths were observed in patients with a baseline performance status of 2 than in patients with a baseline performance status of 0 or 1.

Embryofetal Toxicity

  • CAMPTOSAR can cause fetal harm when administered to a pregnant woman. Irinotecan was embryotoxic in rats and rabbits at doses significantly lower than those administered to humans on a mg/m2 basis. In rats, at exposures approximately 0.2 times those achieved in humans at the 125 mg/m2 dose, irinotecan was embryotoxic and resulted in decreased learning ability and female fetal body weight in surviving pups; the drug was teratogenic at lower exposures (approximately 0.025 times the AUC in humans at the 125 mg/m2 dose). There are no adequate and well-controlled studies of irinotecan in pregnant women. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to a fetus. Women of childbearing potential should be advised to avoid becoming pregnant while receiving treatment with CAMPTOSAR.

Patients with Hepatic Impairment

  • The use of CAMPTOSAR in patients with significant hepatic impairment has not been established. In clinical trials of either dosing schedule, irinotecan was not administered to patients with serum bilirubin >2.0 mg/dL, or transaminase >3 times the upper limit of normal if no liver metastasis, or transaminase >5 times the upper limit of normal with liver metastasis. In clinical trials of the weekly dosage schedule, patients with modestly elevated baseline serum total bilirubin levels (1.0 to 2.0 mg/dL) had a significantly greater likelihood of experiencing first-cycle, grade 3 or 4 neutropenia than those with bilirubin levels that were less than 1.0 mg/dL (50% [19/38] versus 18%

Adverse Reactions

Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.

First-Line Combination Therapy
  • A total of 955 patients with metastatic colorectal cancer received the recommended regimens of irinotecan in combination with 5-FU/LV, 5-FU/LV alone, or irinotecan alone. In the two phase 3 studies, 370 patients received irinotecan in combination with 5-FU/LV, 362 patients received 5-FU/LV alone, and 223 patients received irinotecan alone.
  • In Study 1, 49 (7.3%) patients died within 30 days of last study treatment: 21 (9.3%) received irinotecan in combination with 5-FU/LV, 15 (6.8%) received 5-FU/LV alone, and 13 (5.8%) received irinotecan alone. Deaths potentially related to treatment occurred in 2 (0.9%) patients who received irinotecan in combination with 5-FU/LV (2 neutropenic fever/sepsis), 3 (1.4%) patients who received 5-FU/LV alone (1 neutropenic fever/sepsis, 1 CNS bleeding during thrombocytopenia, 1 unknown) and 2 (0.9%) patients who received irinotecan alone (2 neutropenic fever). Deaths from any cause within 60 days of first study treatment were reported for 15 (6.7%) patients who received irinotecan in combination with 5-FU/LV, 16 (7.3%) patients who received 5-FU/LV alone, and 15 (6.7%) patients who received irinotecan alone. Discontinuations due to adverse events were reported for 17 (7.6%) patients who received irinotecan in combination with 5-FU/LV, 14 (6.4%) patients who received 5-FU/LV alone, and 26 (11.7%) patients who received irinotecan alone.
  • In Study 2, 10 (3.5%) patients died within 30 days of last study treatment: 6 (4.1%) received irinotecan in combination with 5-FU/LV and 4 (2.8%) received 5-FU/LV alone. There was one potentially treatment-related death, which occurred in a patient who received irinotecan in combination with 5-FU/LV (0.7%, neutropenic sepsis). Deaths from any cause within 60 days of first study treatment were reported for 3 (2.1%) patients who received irinotecan in combination with 5-FU/LV and 2 (1.4%) patients who received 5-FU/LV alone. Discontinuations due to adverse events were reported for 9 (6.2%) patients who received irinotecan in combination with 5-FU/LV and 1 (0.7%) patient who received 5-FU/LV alone.
  • The most clinically significant adverse events for patients receiving irinotecan-based therapy were diarrhea, nausea, vomiting, neutropenia, and alopecia. The most clinically significant adverse events for patients receiving 5-FU/LV therapy were diarrhea, neutropenia, neutropenic fever, and mucositis. In Study 1, grade 4 neutropenia, neutropenic fever (defined as grade 2 fever and grade 4 neutropenia), and mucositis were observed less often with weekly irinotecan/5-FU/LV than with monthly administration of 5-FU/LV.



Second-Line Single-Agent Therapy
Weekly Dosage Schedule
  • In three clinical studies evaluating the weekly dosage schedule, 304 patients with metastatic carcinoma of the colon or rectum that had recurred or progressed following 5-FU-based therapy were treated with CAMPTOSAR. Seventeen of the patients died within 30 days of the administration of CAMPTOSAR; in five cases (1.6%, 5/304), the deaths were potentially drug-related. One of the patients died of neutropenic sepsis without fever. Neutropenic fever occurred in nine (3.0%) other patients; these patients recovered with supportive care.
  • One hundred nineteen (39.1%) of the 304 patients were hospitalized because of adverse events; 81 (26.6%) patients were hospitalized for events judged to be related to administration of CAMPTOSAR. The primary reasons for drug-related hospitalization were diarrhea, with or without nausea and/or vomiting (18.4%); neutropenia/leukopenia, with or without diarrhea and/or fever (8.2%); and nausea and/or vomiting.
  • The first dose of at least one cycle of CAMPTOSAR was reduced for 67% of patients who began the studies at the 125-mg/m2 starting dose. Within-cycle dose reductions were required for 32% of the cycles initiated at the 125-mg/m2 dose level. The most common reasons for dose reduction were late diarrhea, neutropenia, and leukopenia. Thirteen (4.3%) patients discontinued treatment with CAMPTOSAR because of adverse events.



Once-Every-3-Week Dosage Schedule
  • A total of 535 patients with metastatic colorectal cancer whose disease had recurred or progressed following prior 5-FU therapy participated in the two phase 3 studies: 316 received irinotecan, 129 received 5-FU, and 90 received best supportive care. Eleven (3.5%) patients treated with irinotecan died within 30 days of treatment. In three cases (1%, 3/316), the deaths were potentially related to irinotecan treatment and were attributed to neutropenic infection, grade 4 diarrhea, and asthenia, respectively. One (0.8%, 1/129) patient treated with 5-FU died within 30 days of treatment; this death was attributed to grade 4 diarrhea.
  • Hospitalizations due to serious adverse events occurred at least once in 60% (188/316) of patients who received irinotecan, 63% (57/90) who received best supportive care, and 39% (50/129) who received 5-FU-based therapy. Eight percent of patients treated with irinotecan and 7% treated with 5-FU-based therapy discontinued treatment due to adverse events.
  • Of the 316 patients treated with irinotecan, the most clinically significant adverse events (all grades, 1–4) were diarrhea (84%), alopecia (72%), nausea (70%), vomiting (62%), cholinergic symptoms (47%), and neutropenia (30%).



The incidence of akathisia in clinical trials of the weekly dosage schedule was greater (8.5%, 4/47 patients) when prochlorperazine was administered on the same day as CAMPTOSAR than when these drugs were given on separate days (1.3%, 1/80 patients). The 8.5% incidence of akathisia, however, is within the range reported for use of prochlorperazine when given as a premedication for other chemotherapies.

Postmarketing Experience

The following adverse reactions have been identified during post approval use of CAMPTOSAR. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Drug Interactions

5-Fluorouracil (5-FU) and Leucovorin (LV)

  • In a phase 1 clinical study involving irinotecan, 5-fluorouracil (5-FU), and leucovorin (LV) in 26 patients with solid tumors, the disposition of irinotecan was not substantially altered when the drugs were co-administered. Although the Cmax and AUC0–24 of SN-38, the active metabolite, were reduced (by 14% and 8%, respectively) when irinotecan was followed by 5-FU and LV administration compared with when irinotecan was given alone, this sequence of administration was used in the combination trials and is recommended. Formal in vivo or in vitro drug interaction studies to evaluate the influence of irinotecan on the disposition of 5-FU and LV have not been conducted.

Strong CYP3A4 Inducers

  • Exposure to irinotecan or its active metabolite SN-38 is substantially reduced in adult and pediatric patients concomitantly receiving the CYP3A4 enzyme-inducing anticonvulsants phenytoin, phenobarbital, carbamazepine, or St. John's wort. The appropriate starting dose for patients taking these or other strong inducers such as rifampin and rifabutin has not been defined. Consider substituting non-enzyme inducing therapies at least 2 weeks prior to initiation of CAMPTOSAR therapy. Do not administer strong CYP3A4 inducers with CAMPTOSAR unless there are no therapeutic alternatives.

Strong CYP3A4 or UGT1A1 Inhibitors

Use in Specific Populations

Pregnancy

Pregnancy Category (FDA): D CAMPTOSAR can cause fetal harm when administered to a pregnant woman. Radioactivity related to 14C-irinotecan crosses the placenta of rats following intravenous administration of 10 mg/kg (which in separate studies produced an irinotecan Cmax and AUC about 3 and 0.5 times, respectively, the corresponding values in patients administered 125 mg/m2). Intravenous administration of irinotecan 6 mg/kg/day to rats and rabbits during the period of organogenesis resulted in increased post-implantation loss and decreased numbers of live fetuses. In separate studies in rats, this dose produced an irinotecan Cmax and AUC of about 2 and 0.2 times, respectively, the corresponding values in patients administered 125 mg/m2. In rabbits, the embryotoxic dose was about one-half the recommended human weekly starting dose on a mg/m2 basis. Irinotecan was teratogenic in rats at doses greater than 1.2 mg/kg/day and in rabbits at 6.0 mg/kg/day. In separate studies in rats, this dose produced an irinotecan Cmax and AUC about 2/3 and 1/40th, respectively, of the corresponding values in patients administered 125 mg/m2. In rabbits, the teratogenic dose was about one-half the recommended human weekly starting dose on a mg/m2 basis. Teratogenic effects included a variety of external, visceral, and skeletal abnormalities. Irinotecan administered to rat dams for the period following organogenesis through weaning at doses of 6 mg/kg/day caused decreased learning ability and decreased female body weights in the offspring. There are no adequate and well-controlled studies of irinotecan in pregnant women. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to a fetus. Women of childbearing potential should be advised to avoid becoming pregnant while receiving treatment with CAMPTOSAR.
Pregnancy Category (AUS): There is no Australian Drug Evaluation Committee (ADEC) guidance on usage of Irinotecan in women who are pregnant.

Labor and Delivery

There is no FDA guidance on use of Irinotecan during labor and delivery.

Nursing Mothers

  • Radioactivity appeared in rat milk within 5 minutes of intravenous administration of radiolabeled irinotecan and was concentrated up to 65-fold at 4 hours after administration relative to plasma concentrations. It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from CAMPTOSAR, a decision should be made whether to discontinue nursing or discontinue the drug, taking into account the importance of the drug to the mother.

Pediatric Use

  • The effectiveness of irinotecan in pediatric patients has not been established. Results from two open-label, single arm studies were evaluated. One hundred and seventy children with refractory solid tumors were enrolled in one phase 2 trial in which 50 mg/ m2 of irinotecan was infused for 5 consecutive days every 3 weeks. Grade 3–4 neutropenia was experienced by 54 (31.8%) patients. Neutropenia was complicated by fever in 15 (8.8%) patients. Grade 3–4 diarrhea was observed in 35 (20.6%) patients. This adverse event profile was comparable to that observed in adults. In the second phase 2 trial of 21 children with previously untreated rhabdomyosarcoma, 20 mg/m2 of irinotecan was infused for 5 consecutive days on weeks 0, 1, 3 and 4. This single agent therapy was followed by multimodal therapy. Accrual to the single agent irinotecan phase was halted due to the high rate (28.6%) of progressive disease and the early deaths (14%). The adverse event profile was different in this study from that observed in adults; the most significant grade 3 or 4 adverse events were dehydration experienced by 6 patients (28.6%) associated with severe hypokalemia in 5 patients (23.8%) and hyponatremia in 3 patients (14.3%); in addition Grade 3–4 infection was reported in 5 patients (23.8%) (across all courses of therapy and irrespective of causal relationship).
  • Pharmacokinetic parameters for irinotecan and SN-38 were determined in 2 pediatric solid-tumor trials at dose levels of 50 mg/m2 (60-min infusion, n=48) and 125 mg/m2 (90-min infusion, n=6). Irinotecan clearance (mean ± S.D.) was 17.3 ± 6.7 L/h/m2 for the 50mg/m2 dose and 16.2 ± 4.6 L/h/m2 for the 125 mg/m2 dose, which is comparable to that in adults. Dose-normalized SN-38 AUC values were comparable between adults and children. Minimal accumulation of irinotecan and SN-38 was observed in children on daily dosing regimens [daily × 5 every 3 weeks or (daily × 5) × 2 weeks every 3 weeks].

Geriatic Use

  • Patients greater than 65 years of age should be closely monitored because of a greater risk of early and late diarrhea in this population. The starting dose of CAMPTOSAR in patients 70 years and older for the once-every-3-week-dosage schedule should be 300 mg/m2.
  • The frequency of grade 3 and 4 late diarrhea by age was significantly greater in patients ≥65 years than in patients <65 years (40% [53/133] versus 23% [40/171]; p=0.002). In another study of 183 patients treated on the weekly schedule, the frequency of grade 3 or 4 late diarrhea in patients ≥65 years of age was 28.6% [26/91] and in patients <65 years of age was 23.9% [22/92].

Gender

There is no FDA guidance on the use of Irinotecan with respect to specific gender populations.

Race

There is no FDA guidance on the use of Irinotecan with respect to specific racial populations.

Renal Impairment

The influence of renal impairment on the pharmacokinetics of irinotecan has not been evaluated. Therefore, use caution in patients with impaired renal function. CAMPTOSAR is not recommended for use in patients on dialysis.

Hepatic Impairment

Irinotecan clearance is diminished in patients with hepatic impairment while exposure to the active metabolite SN-38 is increased relative to that in patients with normal hepatic function. The magnitude of these effects is proportional to the degree of liver impairment as measured by elevations in total bilirubin and transaminase concentrations. Therefore, use caution when administering CAMPTOSAR to patients with hepatic impairment. The tolerability of irinotecan in patients with hepatic dysfunction (bilirubin greater than 2 mg/dl) has not been assessed sufficiently, and no recommendations for dosing can be made.

Females of Reproductive Potential and Males

There is no FDA guidance on the use of Irinotecan in women of reproductive potentials and males.

Immunocompromised Patients

There is no FDA guidance one the use of Irinotecan in patients who are immunocompromised.

Administration and Monitoring

Administration

There is limited information regarding Irinotecan Administration in the drug label.

Monitoring

There is limited information regarding Irinotecan Monitoring in the drug label.

IV Compatibility

There is limited information regarding the compatibility of Irinotecan and IV administrations.

Overdosage

I*n U.S. phase 1 trials, single doses of up to 345 mg/m2 of irinotecan were administered to patients with various cancers. Single doses of up to 750 mg/m2 of irinotecan have been given in non-U.S. trials. The adverse events in these patients were similar to those reported with the recommended dosage and regimen. There have been reports of overdosage at doses up to approximately twice the recommended therapeutic dose, which may be fatal. The most significant adverse reactions reported were severe neutropenia and severe diarrhea. There is no known antidote for overdosage of CAMPTOSAR. Maximum supportive care should be instituted to prevent dehydration due to diarrhea and to treat any infectious complications.

Pharmacology

Irinotecan
Clinical data
Trade namesCamptosar
AHFS/Drugs.comMonograph
MedlinePlusa608043
Pregnancy
category
  • D (Australia, United States)
Routes of
administration
Intravenous
ATC code
Legal status
Legal status
  • POM (UK), ℞-only (U.S.)
Pharmacokinetic data
BioavailabilityNA
MetabolismHepatic glucuronidation
Elimination half-life6 to 12 hours
ExcretionBiliary and renal
Identifiers
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
E number{{#property:P628}}
ECHA InfoCard{{#property:P2566}}Lua error in Module:EditAtWikidata at line 36: attempt to index field 'wikibase' (a nil value).
Chemical and physical data
FormulaC33H38N4O6 e
Molar mass586.678 g/mol (Irinotecan)
623.139 g/mol (Irinotecan hydrochloride)
677.185 g/mol (Irinotecan hydrochloride trihydrate))
3D model (JSmol)
  (verify)

Mechanism of Action

Irinotecan is a derivative of camptothecin. Camptothecins interact specifically with the enzyme topoisomerase I, which relieves torsional strain in DNA by inducing reversible single-strand breaks. Irinotecan and its active metabolite SN-38 bind to the topoisomerase I-DNA complex and prevent religation of these single-strand breaks. Current research suggests that the cytotoxicity of irinotecan is due to double-strand DNA damage produced during DNA synthesis when replication enzymes interact with the ternary complex formed by topoisomerase I, DNA, and either irinotecan or SN-38. Mammalian cells cannot efficiently repair these double-strand breaks.

Structure

Pharmacodynamics

  • Irinotecan serves as a water-soluble precursor of the lipophilic metabolite SN-38. SN-38 is formed from irinotecan by carboxylesterase-mediated cleavage of the carbamate bond between the camptothecin moiety and the dipiperidino side chain. SN-38 is approximately 1000 times as potent as irinotecan as an inhibitor of topoisomerase I purified from human and rodent tumor cell lines. In vitro cytotoxicity assays show that the potency of SN-38 relative to irinotecan varies from 2- to 2000-fold; however, the plasma area under the concentration versus time curve (AUC) values for SN-38 are 2% to 8% of irinotecan and SN-38 is 95% bound to plasma proteins compared to approximately 50% bound to plasma proteins for irinotecan. The precise contribution of SN-38 to the activity of CAMPTOSAR is thus unknown. Both irinotecan and SN-38 exist in an active lactone form and an inactive hydroxy acid anion form. A pH-dependent equilibrium exists between the two forms such that an acid pH promotes the formation of the lactone, while a more basic pH favors the hydroxy acid anion form.
  • Administration of irinotecan has resulted in antitumor activity in mice bearing cancers of rodent origin and in human carcinoma xenografts of various histological types.

Pharmacokinetics

There is limited information regarding Irinotecan Pharmacokinetics in the drug label.

Nonclinical Toxicology

There is limited information regarding Irinotecan Nonclinical Toxicology in the drug label.

Clinical Studies

There is limited information regarding Irinotecan Clinical Studies in the drug label.

How Supplied

There is limited information regarding Irinotecan How Supplied in the drug label.

Storage

There is limited information regarding Irinotecan Storage in the drug label.

Images

Drug Images

{{#ask: Page Name::Irinotecan |?Pill Name |?Drug Name |?Pill Ingred |?Pill Imprint |?Pill Dosage |?Pill Color |?Pill Shape |?Pill Size (mm) |?Pill Scoring |?NDC |?Drug Author |format=template |template=DrugPageImages |mainlabel=- |sort=Pill Name }}

Package and Label Display Panel

{{#ask: Label Page::Irinotecan |?Label Name |format=template |template=DrugLabelImages |mainlabel=- |sort=Label Page }}

Patient Counseling Information

There is limited information regarding Irinotecan Patient Counseling Information in the drug label.

Precautions with Alcohol

Alcohol-Irinotecan interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.

Brand Names

There is limited information regarding Irinotecan Brand Names in the drug label.

Look-Alike Drug Names

There is limited information regarding Irinotecan Look-Alike Drug Names in the drug label.

Drug Shortage Status

Price

References

The contents of this FDA label are provided by the National Library of Medicine.