Lassa fever pathophysiology

Jump to navigation Jump to search

Lassa fever Microchapters

Home

Patient Information

Overview

Historical Perspective

Pathophysiology

Causes

Differentiating Lassa fever from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Primary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Lassa fever pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Lassa fever pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Lassa fever pathophysiology

CDC on Lassa fever pathophysiology

Lassa fever pathophysiology in the news

Blogs on Lassa fever pathophysiology

Directions to Hospitals Treating Lassa fever

Risk calculators and risk factors for Lassa fever pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [2]; Associate Editor(s)-in-Chief: Ammu Susheela, M.D. [3]

Synonyms and keywords: Lassa hemorrhagic fever; LHF

Overview

Lassa fever is a zoonotic disease caused by Lassa virus and spread by multimammate rat vector. It is spread through person-to-person contact, direct contact with rodent excretion and after an incubation period of 1-24 days can manifest as fever, muscle aches, sore throat, nausea, vomiting, chest and abdominal pain, weakness, cough, headache, exudative pharyngitis, anemia, low blood pressure, and diarrhea.

Pathophysiology

Pathogenesis

Transmission

Lassa Fever wikipedia.png[1][2]

Rodent to Human

  • Infection in humans typically occurs via exposure to animal excrement through the respiratory or gastrointestinal tracts.
  • Inhalation of tiny particles of infective material (aerosol) is believed to be the most significant means of exposure.
  • It is possible to acquire the infection through broken skin or mucous membranes that are directly exposed to infective material. In fatal cases, Lassa fever is characterized by impaired or delayed cellular immunity leading to fulminant viremia[2].
  • Finally, because Mastomys rodents are sometimes consumed as a food source, infection may occur via direct contact when they are caught and prepared for food.

Human to Human

  • There are a number of ways in which the virus may be transmitted, or spread, to humans.
  • This type of transmission occurs when a person comes into contact with virus in the blood, tissue, secretions, or excretions of an individual infected with the Lassa virus.
  • The virus cannot be spread through casual contact (including skin-to-skin contact without exchange of body fluids).
  • Person-to-person transmission is common in both village and health care settings, where, along with the above-mentioned modes of transmission, the virus also may be spread in contaminated medical equipment, such as reused needles (this is called nosocomial transmission). Frequency of transmission via sexual contact has not been established. * Transmission through breast milk has also been observed.

Pathology

Molecular Pathology

  • Lassa virus infect the cells especially endothelial cells and release cytokines and other inflammatory cell mediators.[3]
  • The mediators cause platelet dysfunction and suppress cardiac function as well as produce clinical manifestation of shock and inflammation.
  • Microscopically, the virus causes hepatocellular necrosis and capillary lesions that can cause certain organs to hemorrhage. Lassa virus travels through the body via the blood, lymph vessels, respiratory tract, and digestive tract. Because of the multitude of dissemination strategies in the body, it is able to infect almost every organ in the human body. It has even been found in the cerebrospinal fluid which suggests a malfunction or defect of the blood brain barrier. Even though the virus targets the entire body, the liver is usually the organ that is most affected. The virus escapes detection by suppressing the immune system.
  • Patients infected with LASV produce IgM and IgG antibody isotypes.[4].
  • Microscopic findings include hepatocellular necrosis and apoptosis, splenic necrosis, adrenocortical necrosis, mild mononuclear interstitial myocarditis without myocardial fiber necrosis, alveolar edema with capillary congestion and mild interstitial pneumonitis, lymph nodal sinus histiocytosis with mitoses, gastrointestinal mucosal petechiae, renal tubular injury, and interstitial nephritis.[5][6]ref name="pmid3953952">McCormick JB, Walker DH, King IJ, Webb PA, Elliott LH, Whitfield SG; et al. (1986). "Lassa virus hepatitis: a study of fatal Lassa fever in humans". Am J Trop Med Hyg. 35 (2): 401–7. PMID 3953952. </ref>
  • The necrotic hepatocytes were randomly distributed often forming foci of contiguous cells. Mononuclear phagocytes were observed either contacting or phagocytosing necrotic hepatocytes.
  • Splenic necrosis was found in the marginal zone of the periarteriolar lymphocytic sheath. Splenic venous subendothelium appeared to be infiltrated by lymphocytes and other mononuclear cells.
  • The Lassa virus is diagnosed several ways including the discovery of the viral antigen, antibodies, or virus culture. One way to detect the virus antigen is to use the virus’s antibodies in enzyme-linked immunosorbent assays (ELISAs). The virus can also be revealed though indirect immunoflourescence which detects the virus antibodies IgM and IgG. Lastly, the virus can be uncovered using reverse transcription PCR after first reverse transcribing the RNA of the virus into DNA.
  • While, at present, there is no vaccine for Lassa virus, the broad-spectrum nucleoside analogue ribaviran has been demonstrated to have therapeutic effect on patients suffering from Lassa fever. Ribaviran works by mutating the progeny genomes of the virus by incorporating itself into the virus’s RNA. While this method has been proven to reduce mortality, it is most successful if it is given within 6-7 days of the start of symptoms. Ribaviran by itself is not enough, the patient also needs rigorous care in the hospital setting. Someone suffering from Lassa virus needs to have their fluids and electrolytes kept in balance, they require the proper amount of oxygen, their blood pressure needs to be monitored, and they need prompt treatment for any complications that may arise.

References

  1. Flatz L, Rieger T, Merkler D, Bergthaler A, Regen T, Schedensack M; et al. (2010). "T cell-dependence of Lassa fever pathogenesis". PLoS Pathog. 6 (3): e1000836. doi:10.1371/journal.ppat.1000836. PMC 2847900. PMID 20360949.
  2. 2.0 2.1 "wikipedia".
  3. Yun NE, Walker DH (2012). "Pathogenesis of Lassa fever". Viruses. 4 (10): 2031–48. doi:10.3390/v4102031. PMC 3497040. PMID 23202452.
  4. Johnson KM, McCormick JB, Webb PA, Smith ES, Elliott LH, King IJ (1987). "Clinical virology of Lassa fever in hospitalized patients". J Infect Dis. 155 (3): 456–64. PMID 3805773.
  5. Frame JD, Baldwin JM, Gocke DJ, Troup JM (1970). "Lassa fever, a new virus disease of man from West Africa. I. Clinical description and pathological findings". Am J Trop Med Hyg. 19 (4): 670–6. PMID 4246571.
  6. Walker DH, McCormick JB, Johnson KM, Webb PA, Komba-Kono G, Elliott LH; et al. (1982). "Pathologic and virologic study of fatal Lassa fever in man". Am J Pathol. 107 (3): 349–56. PMC 1916239. PMID 7081389.

Template:WikiDoc Sources