Astrocytoma Biopsy

Revision as of 00:14, 24 August 2015 by Ammu Susheela (talk | contribs)
Jump to navigation Jump to search

Astrocytoma Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Astrocytoma from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-Ray

Echocardiography and Ultrasound

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Study

Case #1

Astrocytoma Biopsy On the Web

Most recent articles

cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Astrocytoma Biopsy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Astrocytoma Biopsy

CDC on Astrocytoma Biopsy

Astrocytoma Biopsy in the news

Blogs on Astrocytoma Biopsy

Directions to Hospitals Treating Astrocytoma

Risk calculators and risk factors for Astrocytoma Biopsy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Ammu Susheela, M.D. [2]

Overview

Biopsy

If doctors think there may be an astrocytoma, a biopsy may be done to remove a sample of tissue. For tumors in the brain, a part of the skull is removed and a needle is used to remove tissue. Sometimes, the needle is guided by a computer. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, the doctor may remove as much tumor as safely possible during the same surgery. Because it can be hard to tell the difference between types of brain tumors, you may want to have your child's tissue sample checked by a pathologist who has experience in diagnosing brain tumors. The following test may be done on the tissue that was removed:

  • Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This type of test may be used to tell the difference between different types of cancer. An MIB-1 test is a type of immunohistochemistry that checks tumor tissue for an antigen called MIB-1. This may show how fast a tumor is growing.

Sometimes tumors form in a place that makes them hard to remove. If removing the tumor may cause severe physical, emotional, or learning problems, a biopsy is done and more treatment is given after the biopsy.

Children who have NF1 may not need a biopsy or surgery to remove the tumor.

Low grade infiltrative astrocytoma[1]

  • Diffuse low grade astrocytomas are predominantly composed of a microcystic tumour matrix within which are embedded fibrillary neoplastic astrocytes with mild nuclear atypia and a low cellular density. * Often microcystic spaces containing mucinous fluid are present, a typical finding in fibrillary astrocytomas, but even more characteristic and pronounced in protoplasmic astrocytomas.
  • The occasional occurrence of gemistocytes in a diffuse astrocytoma does not justify the diagnosis of gemistocytic astrocytoma. Gemistocytic astrocytomas tend to progress more rapidly to anaplastic astrocytoma and secondary glioblastoma than fibrillary astrocytoma although they share the WHO grade II.
  • Mitoses, microvascular proliferation and necrosis are absent (if present they suggest a high grade tumour). Like all tumours derived from astrocytes, fibrillary astrocytomas stain with glial fibrillary acidic protein (gFAP).

Anaplastic astrocytomas

  • The key feature present in anaplastic astrocytomas, absent in low grade tumours is mitotic activity and cellular pleomorphism.

Pilocytic astrocytoma

  • The term pilocytic refers to the the elongated hair-like projections from the neoplastic cells. The presence of eosinophilic Rosenthal fibres is a characteristic feature, and hyalinisation of blood vessels is also common.[2]

Pilomyxoid Astrocytomas

  • Features typically found in pilocytic astrocytomas, such as and Rosenthal fibres, eosinophilic granular bodies and calcification are uncommon or absent in PMAs[3][4]. These tumours also lack the biphasic appearance (dense cellular areas alternating with loose cystic areas) usually present in PAs.



References

  1. "Low grade infiltrative astrocytoma [Dr Bruno Di Muzio and Dr Frank Gaillard]".
  2. Drevelegas, Antonios (2011). Imaging of brain tumors with histological correlations. Berlin New York: Springer. ISBN 3540876502.
  3. Pereira FO, Lombardi IA, Mello AY, Romero FR, Ducati LG, Gabarra RC; et al. (2013). "Pilomyxoid astrocytoma of the brainstem". Rare Tumors. 5 (2): 65–7. doi:10.4081/rt.2013.e17. PMC 3719112. PMID 23888217.
  4. Azad S, Kudesia S, Chawla N, Azad R, Singhal M, Rai SM; et al. (2010). "Pilomyxoid astrocytoma". Indian J Pathol Microbiol. 53 (2): 294–6. doi:10.4103/0377-4929.64283. PMID 20551536.

Template:WH Template:WS