Thrombophilia pathophysiology

Jump to navigation Jump to search


Thrombophilia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Thrombophilia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Thrombophilia pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Thrombophilia pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Thrombophilia pathophysiology

CDC on Thrombophilia pathophysiology

Thrombophilia pathophysiology in the news

Blogs on Thrombophilia pathophysiology

Directions to Hospitals Treating Thrombophilia

Risk calculators and risk factors for Thrombophilia pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Asiri Ediriwickrema, M.D., M.H.S. [2]

Overview

Pathophysiology

  • The primary mechanism for thrombus formation in common inherited thrombophilic states involves thrombin dysregulation.
  • Anticoagulants that regulate thrombin include antithrombin, protein C, protein S
  • Mutations in antithrombin, can lead to increased thrombus formation[1].
  • Protein C and S are natural anticoagulants which inhbit thrombin formation. Dysregulation in activated protein C (APC) can occur as either defects in the protein C or S molecule (Protein C and S deficiency) or as resistance to APC activity[2]. APC resistance occurs when APC fails to inactivate downstream coagulation factors, specifically Factor V and Factor VIII.
  • The most common inherited thrombophilia is Factor V Leiden, which is a polymorphism of Factor V that is resistant to APC inactivation[2].
  • The second most common inherited thrombophilia involves a gain of function mutation of the prothrombin gene (Prothrombin G20210A) resulting in increased protein activity and thrombus formation[3]
  • Dysfibrinogenemia is a disorder of fibrinogen formation or activty resulting in predisposition for bleeding, thrombosis or both[4]


Thrombus formation in inherited thrombophilia. In thrombophilia, procoagulant and anticoagulant factors are dysregulated, leading to thrombus formation

Figure illustrating thrombus formation in inherited thrombophilias. Adapted from: N Engl J Med. 2001 Apr 19;344(16):1222-31[2].

References

  1. EGEBERG O (1965). "INHERITED ANTITHROMBIN DEFICIENCY CAUSING THROMBOPHILIA". Thromb Diath Haemorrh. 13: 516–30. PMID 14347873.
  2. 2.0 2.1 2.2 Seligsohn U, Lubetsky A (2001). "Genetic susceptibility to venous thrombosis". N Engl J Med. 344 (16): 1222–31. doi:10.1056/NEJM200104193441607. PMID 11309638.
  3. Poort SR, Rosendaal FR, Reitsma PH, Bertina RM (1996). "A common genetic variation in the 3'-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis". Blood. 88 (10): 3698–703. PMID 8916933.
  4. Cunningham MT, Brandt JT, Laposata M, Olson JD (2002). "Laboratory diagnosis of dysfibrinogenemia". Arch Pathol Lab Med. 126 (4): 499–505. doi:10.1043/0003-9985(2002)126<0499:LDOD>2.0.CO;2. PMID 11900586.

Template:WH Template:WS