Lipoprotein disorders classification
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:
Lipoprotein Disorders Microchapters |
Overview
Lipoprotein disorders can be classified according to the Fredrickson classification which is based on the pattern of lipoproteins on electrophoresis or ultracentrifugation.[1] It was later adopted by the World Health Organization (WHO). It does not directly account for HDL, and it does not distinguish among the different genes that may be partially responsible for some of these conditions. It remains a popular system of classification, but is considered outdated by many.
Classification
There are several ways in which lipoprotein abnormalities are classified. Lipoprotein disorders can be classified according to:
- The pattern of change in the lipoprotein levels, described as hyperlipidemia (increase in lipid levels) and hypolipidemia (decrease in lipid levels): However, this classification is problematic because the lipids and lipoproteins levels in some situation can be elevated in some types of lipoproteins and lipids and decreased in others.
- Phenotype, or the specific type of lipid that is increased, as classified by Fredrickson: This classification is problematic because it does not include abnormalities in the level of HDL.
- Etiology, as primary (genetic) or secondary to another condition: This classification can be problematic, because most conditions involve the intersection of genetics and lifestyle issues. However, there are a few well defined genetic conditions that are usually easy to identify.
- Levels of measured lipids (cholesterol and triglycerides), described as hypercholesterolemia and hypocholesterolemia or hypertriglyceridimia and hypotriglyceridemia: This distinction is not specific because it does not reflect the specific lipoprotein(s) that are abnormally high or low.
Fredrickson Classification of Hyperlipoproteinemia
Hyperlipoproteinemia | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Type I: Familial hyperchylomicronemia | Type II | Type III: Dysbetalipoproteinemia | Type IV: Primary hypertriglyceridemia | Type V: Mixed hyperlipoproteinemia | |||||||||||||||||||||||||||||||||||||||||||||||||||
Type A: Familial hypercholesterolemia | Type B: Familial combined hyperlipidemia | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Type A | Type B | Type C | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Hyperlipoproteinemia | Synonyms | Problems | Labs description | Treatment |
---|---|---|---|---|
Type I | Buerger-Gruetz syndrome, primary hyperlipoproteinaemia, or familial hyperchylomicronemia | Decreased lipoprotein lipase (LPL) or altered ApoC2 | Elevated chylomicrons | Diet control |
Type IIa | Polygenic hypercholesterolaemia or familial hypercholesterolemia | LDL receptor deficiency | Elevated LDL only | Bile acid sequestrants, statins, niacin |
Type IIb | Combined hyperlipidemia | Decreased LDL receptor and increased ApoB | Elevated LDL, VLDL and triglycerides | Statins, niacin, gemfibrozil |
Type III | Familial Dysbetalipoproteinemia | Defect in ApoE synthesis | Increased IDL | Drug of choice: Gemfibrozil |
Type IV | Endogenous Hyperlipemia | Increased VLDL production and decreased elimination | Increased VLDL | Drug of choice: Niacin |
Type V | Familial Hypertriglyceridemia | Increased VLDL production and decreased LPL | Increased VLDL and chylomicrons | Niacin, gemfibrozil |
Unclassified forms
Non-classified forms are extremely rare:
- Hypo-alpha lipoproteinemia
- Hypo-beta lipoproteinemia (prevalence 0.01-0.1%)
Classification According to Etiology
Lipoprotein/Lipid disorders | |||||||||||||||||||||||||||||||||||||||||||||||||||
Primary (Genetic) | Secondary | ||||||||||||||||||||||||||||||||||||||||||||||||||
LDL | Chylomicron Remnants | Lipoproteins Rich in Triglyceride (Chylomicrons, VLDL, IDL) | HDL | Multiple lipoproteins | Alcohol Diabetes Drugs Liver disease Obesity Renal disease Smoking Thyroid | ||||||||||||||||||||||||||||||||||||||||||||||
High LDL: -Familial hypercholesterolemia -Familial defective apo B 100 -Autosomal dominant hypercholesterolemia (PCSK9) -Autosomal recessive hypercholesterolemia -Familial sistosterolemia -Familial lipoprotein a lipoproteinemia Low LDL: -Abetalipoproteinemia -Hypobetalipoproteinemia -PCSK 9 deficiency | -Deficiency in hepatic lipase -Type III dysbetalipoproteinemia | -Deficiency in lipoprotein lipase -Deficiency in Apo C-II -Deficiency in Apo A-V -Familial combined hyperlipidemia -Familial hypertriglyceridemia - Chylomicron retention disease | High LDL: -Cholesteryl ester transferase protein deficiency Low HDL: -Deficiency in Apo A-I -Deficiency in lecithin cholesterol acyltransferase (LCAT) -Familial hypoalphalipoproteinemia -Nieman-Pick disease -Tangier disease | - Familial combined hypolipidemia (ANGPTL3) | |||||||||||||||||||||||||||||||||||||||||||||||
Classification According to Laboratory Results
Lipid Laboratory Tests | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total cholesterol | LDL-C | HDL-C | Triglycerides | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
High total cholesterol | Low total cholesterol | High LDL | Low LDL | High HDL | Low HDL | High triglyceride | Low triglyceride | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
External links
References
- ↑ Frederickson DS, Lee RS. A system for phenotyping hyperlipidemia. Circulation 1965;31:321-7. PMID 14262568.