Mucormycosis pathophysiology

Revision as of 15:25, 24 May 2017 by Skazmi (talk | contribs)
Jump to navigation Jump to search

Mucormycosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Mucormycosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

X Ray

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Syed Hassan A. Kazmi BSc, MD [2]

Overview

Pathophysiology

  • Fungi of the order Mucorales (class Zygomycetes) are causes of mucormycosis, a life-threatening fungal infection affecting immunocompromised hosts in either developing or industrialized countries.
  • Species belonging to the family Mucoraceae are isolated more frequently from patients with mucormycosis.
  • Among the Mucoraceae, Rhizopus oryzae (Rhizopus arrhizus) is by far the most common cause of infection. Increasing cases of mucormycosis have been also reported due to infection with Cunninghamella spp.
  • Neutrophils play a major part in destroying fungal hyphae, once spores germinate. Macrophages and monocytes may also play part in host defense mechanisms against fungi causing mucormycosis (specifically alveolar macrophages prevent germination of spores).[1] Consequently, mucormycosis develops exclusively in immunocompromised patients who lack these defense mechanisms. Hyperglycemia, acidosis and corticosteroid treatment have also been known to hinder immunity (specifically the actions of phagocytic cells), which also puts patients with diabetes and DKA at an increased risk of acquiring mucormycosis.[2]
  • In order to cause disease, the agents of mucormycosis must acquire from the host sufficient iron for growth, must evade host phagocytic defense mechanisms, and must access vasculature to disseminate.
  • In immounocompromised hosts, iron is released from sequestering proteins making it available to fungi for growth within the body. This process alongwith a reduced number of neutrophils and phagocytes leads to fungal proliferation. Damage to the endothelial cells by fungi causing mucormycosis leads to vascular invasion, subsequent dissemination and tissue necrosis.


References

  1. Waldorf AR (1989). "Pulmonary defense mechanisms against opportunistic fungal pathogens". Immunol. Ser. 47: 243–71. PMID 2490078.
  2. Spellberg B, Edwards J, Ibrahim A (2005). "Novel perspectives on mucormycosis: pathophysiology, presentation, and management". Clin. Microbiol. Rev. 18 (3): 556–69. doi:10.1128/CMR.18.3.556-569.2005. PMC 1195964. PMID 16020690.

Template:WH Template:WS