Thalassemia medical therapy
Thalassemia Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Thalassemia medical therapy On the Web |
American Roentgen Ray Society Images of Thalassemia medical therapy |
Risk calculators and risk factors for Thalassemia medical therapy |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Shyam Patel [2]
Overview
Treatment
Anyone with thalassemia should consult a properly qualified hematologist.
Thalassemias may co-exist with other deficiencies such as folic acid (or folate, a B-complex vitamin) and iron deficiency (only in Thalassemia Minor).
Thalassemia Major and Intermedia
Thalassemia Major patients receive frequent blood transfusions that lead to iron overload. In recent years, bone marrow transplant has shown promise with some patients of thalassemia major. Successful transplant can eliminate the patients dependencies in transfusions. Thalassemia Intermedia patients vary a lot in their treatment needs depending on the severity of their anemia.
Complications of Treatment
Iron overload.
Treatment
Iron chelation treatment is necessary to prevent iron overload damage to the internal organs in patients with Thalassemia Major. Because of recent advances in iron chelation treatments, patients with Thalassemia Major can live long lives if they have access to proper treatment. Popular chelators include deferoxamine and deferiprone. Of the two, deferoxamine is preferred; it is associated with fewer side-effects.[1]
The most common complaint by patients is that it is difficult to comply with the intravenous chelation treatments because they are painful and inconvenient. The oral chelator deferasirox (marketed as Exjade) was recently approved for use in some countries and may offer some hope with compliance.
Thalassemia Minor
Contrary to popular belief, Thalassemia Minor patients should not avoid iron-rich foods by default. A serum ferritin test can determine what their iron levels are and guide them to further treatment if necessary. Thalassemia Minor, although not life threatening on its own, can affect quality of life due to the effects of a mild to moderate anemia. Studies have shown that Thalassemia Minor often coexists with other diseases such as asthma[2], and mood disorders[3].
Anti-Oxidant Therapy
The antioxidant indicaxanthin, found in beets, in a spectrophotometric study showed that indicaxanthin can reduce perferryl-Hb generated in solution from met-Hb and hydrogen peroxide, more effectively than either Trolox or Vitamin C. Collectively our results demonstrate that indicaxanthin can be incorporated into the redox machinery of β-thalassemic RBC and defend the cell from oxidation, possibly interfering with perferryl-Hb, a reactive intermediate in the hydroperoxide-dependent Hb degradation.[4]
Hydroxyurea
Recently, increasing reports suggest that up to 5% of patients with beta-thalassemias produce fetal hemoglobin (HbF), and use of hydroxyurea also has a tendency to increase the production of HbF, by as yet unexplained mechanisms.
Gene therapy
Beta-globin gene therapy has been proposed for treatment of thalassemias. This concept is based on the idea that restoration of normal globin gene function can treat the disease.[5]
Contraindicated medications
Thalassemia is considered an absolute contraindication to the use of the following medications:
References
- ↑ Maggio A, D'Amico G; et al. (2002). "Deferiprone versus deferoxamine in patients with thalassemia major: a randomized clinical trial". Blood Cells Mol Dis. 28 (2): 196&ndash, 208. PMID 12064916.
- ↑ Palma-Carlos AG, Palma-Carlos ML, Costa AC (2005). ""Minor" hemoglobinopathies: a risk factor for asthma". Allerg Immunol (Paris). 37 (5): 177&ndash, 82.
- ↑ Brodie BB (2005). "Heterozygous β-thalassaemia as a susceptibility factor in mood disorders: excessive prevalence in bipolar patients". Clin Pract Epidemiol Mental Health. 1: 6. doi:10.1186/1745-0179-1-6.
- ↑ Cytoprotective effects of the antioxidant phytochemical indicaxanthin in β-thalassemia red blood cells
- ↑ Finotti A, Breda L, Lederer CW, Bianchi N, Zuccato C, Kleanthous M; et al. (2015). "Recent trends in the gene therapy of β-thalassemia". J Blood Med. 6: 69–85. doi:10.2147/JBM.S46256. PMC 4342371. PMID 25737641.