Liver dialysis

Jump to navigation Jump to search

Liver dialysis Microchapters

Overview

History

Indications

Contraindications

Liver Dialysis Devices

•Molecular Adsorbents Recirculation System (MARS)
•Single Pass Albumin Dialysis (SPAD)
•Comparing MARS, SPAD, and Veno-venous haemodiafiltratio(CVVHDF)
•Prometheus
•DIALIVE

Liver dialysis prognosis

Complications

Template:Interventions infobox

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Dildar Hussain, MBBS [2]

This article specifically discusses liver dialysis. For information regarding kidney dialysis or dialysis in general, please click here.

Overview

Liver dialysis is a detoxification treatment for liver failure and has shown promise for patients with hepatorenal syndrome. It is similar to hemodialysis and based on the same principles. Like a bioartificial liver device, it is a form of artificial extracorporeal liver support.

A critical issue of the clinical syndrome in liver failure is the accumulation of toxins not cleared by the failing liver. Based on this hypothesis, the removal of lipophilic, albumin-bound substances such as bilirubin, bile acids, metabolites of aromatic amino acids, medium-chain fatty acids and cytokines should be beneficial to the clinical course of a patient in liver failure. This led to the development of artificial filtration and adsorption devices.

Hemodialysis is used for renal failure and primarily removes water soluble toxins, however it does not remove toxins bound to albumin that accumulate in liver failure.

History

  • The extra-corporeal liver support is a much focused topic for past 5 decades.
  • The liver dialysis was introduced in the mid of 1990s.
  • The new liver dialysis device DIALIVE was introduced in 2017.
  • The first patient to undergo liver dialysis with DIALIVE was recruited in London on 24 July 2017.
  • First MARS unit in Canada were reached at the Toronto General Hospital in 2005.
  • The researchers are expected to obtain the regulatory approval for DIALIVE in 2019 or 2020.

Indications

Accepted indications for Liver dialysis include the following:[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18]

Contraindications

Absolute contraindications for Liver dialysis include the following:

Liver Dialysis Devices

Artificial detoxification liver dialysis devices currently under clinical evaluation include:

  • Molecular Adsorbent Recirculating System (MARS)
  • Single Pass Albumin Dialysis (SPAD)
  • Prometheus system
  • DIALIVE

Molecular Adsorbents Recirculation System (MARS)

  • The Molecular Adsorbents Recirculation System (MARS) , its development was started at the University of Rostock in Germany and later was developed by Teraklin AG of Germany. It is the best availabe extracorporal liver dialysis device till today,
  • The MARS is in service for liver dialysis for approximately ten years.
  • There are two separate dialysis circuits:
Circuit Components Function
Circuit 1 Human serum albumin Circuit one is connected to the patient's blood through a semipermeable membrane which contains two special filters to cleanse the albumin after it absorbs toxins from the patient's blood such as ammonia, aromatic amino acids, merceptans, bilirubin, bile acids, cytokines and nitric oxide.
Circuit 2 Hemodialysis machine Circuit two cleanses the albumin from the first circuit before its re-circulation though the semipermeable membrane before it comes in contact with the patient's blood.

Single Pass Albumin Dialysis (SPAD)

Single pass albumin dialysis (SPAD) is a simple method of albumin dialysis using standard renal replacement therapy machines without an additional perfusion pump system: The patient’s blood flows through a circuit with a high-flux hollow fiber hemodiafilter, identical to that used in the MARS system. The other side of this membrane is cleansed with an albumin solution in counter-directional flow, which is discarded after passing the filter. Hemodialysis can be performed in the first circuit via the same high-flux hollow fibers.

Comparing SPAD, MARS and CVVHDF

SPAD, MARS and continuous veno-venous haemodiafiltration (CVVHDF) were compared in vitro with regard to detoxification capacity.[19] SPAD and CVVHDF showed a significantly greater reduction of ammonia compared with MARS. No significant differences could be observed between SPAD, MARS and CVVHDF concerning other water-soluble substances. However, SPAD enabled a significantly greater bilirubin reduction than MARS. Bilirubin serves as an important marker substance for albumin-bound (non water-soluble) substances. Concerning the reduction of bile acids no significant differences between SPAD and MARS were seen. It was concluded that the detoxification capacity of SPAD is similar or even higher when compared with the more sophisticated, more complex and hence more expensive MARS.

As albumin dialysis is a costly procedure, financial aspects are important: For a seven-hour treatment with MARS, approximately € 300 for 600 ml human serum albumin solution (20%), € 1740 for a MARS treatment kit and € 125 for disposables used by the dialysis machine have to be spent. The cost of this therapy adds up to approximately € 2165. Performing SPAD according to the protocol by Sauer et al., however, requires 1000 ml of human albumin solution (20%) at a cost of € 500. A high-flux dialyzer costing approximately € 40 and the tubings (€ 125) must also be purchased. The overall costs of a SPAD treatment is approximately € 656 - 30% of the costs of an equally efficient MARS therapy session. The expenditure for the MARS monitor necessary to operate the MARS disposables is not included in this calculation.

Prometheus

The Prometheus system (Fresenius Medical Care, Bad Homburg, Germany) is a new device based on the combination of albumin adsorption with high-flux hemodialysis after selective filtration of the albumin fraction through a specific polysulfon filter (AlbuFlow). It has been studied[20] in a group of eleven patients with hepatorenal syndrome (acute-on-chronic liver failure and accompanying renal failure). The treatment for two consecutive days for more than four hours significantly improved serum levels of conjugated bilirubin, bile acids, ammonia, cholinesterase, creatinine, urea and blood pH. Prometheus was proven to be a safe supportive therapy for patients with liver failure.

Liver dialysis prognosis/survival

Whilst the technique is in its infancy, the prognosis of patients with liver failure remains guarded. Liver dialysis, currently, is only considered to be a bridge to transplantation or liver regeneration (in the case of acute liver failure)[21][22][23] and, unlike kidney dialysis (for renal failure), cannot support a patient for an extended period of time (months to years).

Related Chapters

External Links

MARS

  • Gambro - the manufacturer of the MARS.
  • MARS - Molecular Adsorbent Recycling System (Teraklin) - a description of the MARS.
  • MARS-Leberdialyse - has a picture of the MARS in action.
  • Evenepoel P, Maes B, Wilmer A, Nevens F, Fevery J, Kuypers D, Bammens B, Vanrenterghem Y. Detoxifying capacity and kinetics of the molecular adsorbent recycling system. Contribution of the different inbuilt filters. Blood Purif. 2003;21(3):244-52. PMID 12784051
  • Mitzner S, Klammt S, Stange J, Noldge-Schomburg GF, Schmidt R. [Extracorporeal blood purification in severe liver failure with the albumin dialysis MARS -- impact on relevant intensive care parameters] Anasthesiol Intensivmed Notfallmed Schmerzther. 2005 Apr;40(4):199-206. PMID 15832238

SPAD

Prometheus

Reference

  1. Doria C, Mandalá L, Smith J, Vitale CH, Lauro A, Gruttadauria S, Marino IR, Foglieni CS, Magnone M, Scott VL (2003). "Effect of molecular adsorbent recirculating system in hepatitis C virus-related intractable pruritus". Liver Transpl. 9 (4): 437–43. doi:10.1053/jlts.2003.50055. PMID 12682899.
  2. Sen S, Mookerjee RP, Cheshire LM, Davies NA, Williams R, Jalan R (2005). "Albumin dialysis reduces portal pressure acutely in patients with severe alcoholic hepatitis". J. Hepatol. 43 (1): 142–8. doi:10.1016/j.jhep.2005.01.032. PMID 15878216.
  3. Jalan R, Sen S, Steiner C, Kapoor D, Alisa A, Williams R (2003). "Extracorporeal liver support with molecular adsorbents recirculating system in patients with severe acute alcoholic hepatitis". J. Hepatol. 38 (1): 24–31. PMID 12480556.
  4. Manz T, Ochs A, Bisse E, Strey C, Grotz W (2003). "Liver support--a task for nephrologists? Extracorporeal treatment of a patient with fulminant Wilson crisis". Blood Purif. 21 (3): 232–6. doi:10.1159/000070695. PMID 12784049.
  5. Mitskevich VM, Kotenko TV, Tsyganov VA, Shenin I (1973). "[Flavoviridomycin, a new tetraen antibiotic]". Antibiotiki (in Russian). 18 (10): 867–72. PMID 4128463. Vancouver style error: initials (help)
  6. Novelli G, Rossi M, Pretagostini R, Poli L, Novelli L, Berloco P, Ferretti G, Iappelli M, Cortesini R (2002). "MARS (Molecular Adsorbent Recirculating System): experience in 34 cases of acute liver failure". Liver. 22 Suppl 2: 43–7. PMID 12220303.
  7. Schmidt LE, Wang LP, Hansen BA, Larsen FS (2003). "Systemic hemodynamic effects of treatment with the molecular adsorbents recirculating system in patients with hyperacute liver failure: a prospective controlled trial". Liver Transpl. 9 (3): 290–7. doi:10.1053/jlts.2003.50051. PMID 12619027.
  8. Chen S, Zhang L, Shi Y, Yang X, Wang M (2002). "Molecular Adsorbent Recirculating System: clinical experience in patients with liver failure based on hepatitis B in China". Liver. 22 Suppl 2: 48–51. PMID 12220304.
  9. Krisper P, Haditsch B, Stauber R, Jung A, Stadlbauer V, Trauner M, Holzer H, Schneditz D (2005). "In vivo quantification of liver dialysis: comparison of albumin dialysis and fractionated plasma separation". J. Hepatol. 43 (3): 451–7. doi:10.1016/j.jhep.2005.02.038. PMID 16023249.
  10. Sen S, Ytrebø LM, Rose C, Fuskevaag OM, Davies NA, Nedredal GI, Williams R, Revhaug A, Jalan R (2004). "Albumin dialysis: a new therapeutic strategy for intoxication from protein-bound drugs". Intensive Care Med. 30 (3): 496–501. doi:10.1007/s00134-003-2141-0. PMID 14735236.
  11. Koivusalo AM, Yildirim Y, Vakkuri A, Lindgren L, Höckerstedt K, Isoniemi H (2003). "Experience with albumin dialysis in five patients with severe overdoses of paracetamol". Acta Anaesthesiol Scand. 47 (9): 1145–50. PMID 12969110.
  12. Rubik J, Pietraszek-Jezierska E, Kamiński A, Skarzynska A, Jóźwiak S, Pawłowska J, Drewniak T, Prokurat S, Grenda R, Kaliciński P (2004). "Successful treatment of a child with fulminant liver failure and coma caused by Amanita phalloides intoxication with albumin dialysis without liver transplantation". Pediatr Transplant. 8 (3): 295–300. doi:10.1111/j.1399-3046.2004.00170.x. PMID 15176968.
  13. Covic A, Goldsmith DJ, Gusbeth-Tatomir P, Volovat C, Dimitriu AG, Cristogel F, Bizo A (2003). "Successful use of Molecular Absorbent Regenerating System (MARS) dialysis for the treatment of fulminant hepatic failure in children accidentally poisoned by toxic mushroom ingestion". Liver Int. 23 Suppl 3: 21–7. PMID 12950957.
  14. Faybik P, Hetz H, Krenn CG, Baker A, Germann P, Berlakovich G, Steininger R, Steltzer H (2003). "Liver support in fulminant liver failure after hemorrhagic shock". Wien. Klin. Wochenschr. 115 (15–16): 595–8. PMID 14531174.
  15. Lahdenperä A, Koivusalo AM, Vakkuri A, Höckerstedt K, Isoniemi H (2005). "Value of albumin dialysis therapy in severe liver insufficiency". Transpl. Int. 17 (11): 717–23. doi:10.1007/s00147-004-0796-2. PMID 15580335.
  16. Hommann M, Kasakow LB, Geoghegan J, Kornberg A, Schotte U, Fuchs D, Hermann J, Zintl F, Scheele J (2002). "Application of MARS artificial liver support as bridging therapy before split liver retransplantation in a 15-month-old child". Pediatr Transplant. 6 (4): 340–3. PMID 12234277.
  17. van de Kerkhove MP, de Jong KP, Rijken AM, de Pont AC, van Gulik TM (2003). "MARS treatment in posthepatectomy liver failure". Liver Int. 23 Suppl 3: 44–51. PMID 12950961.
  18. Parés A, Cisneros L, Salmerón JM, Caballería L, Mas A, Torras A, Rodés J (2004). "Extracorporeal albumin dialysis: a procedure for prolonged relief of intractable pruritus in patients with primary biliary cirrhosis". Am. J. Gastroenterol. 99 (6): 1105–10. doi:10.1111/j.1572-0241.2004.30204.x. PMID 15180733.
  19. Sauer IM, Goetz M, Steffen I, Walter G, Kehr DC, Schwartlander R, Hwang YJ, Pascher A, Gerlach JC, Neuhaus P.: In vitro comparison of the molecular adsorbent recirculation system (MARS) and single-pass albumin dialysis (SPAD). Hepatology. 2004 May;39(5):1408-14. PMID 15122770.
  20. Rifai K, Ernst T, Kretschmer U, Bahr MJ, Schneider A, Hafer C, Haller H, Manns MP, Fliser D. Prometheus--a new extracorporeal system for the treatment of liver failure. J Hepatol. 2003 Dec;39(6):984-90. PMID 14642616.
  21. O'grady J. Personal view: current role of artificial liver support devices. Aliment Pharmacol Ther. 2006 Jun 1;23(11):1549-57. PMID 16696802.
  22. van de Kerkhove MP, Hoekstra R, Chamuleau RA, van Gulik TM. Clinical application of bioartificial liver support systems. Ann Surg. 2004 Aug;240(2):216-30. PMID 15273544. Free Full Text.
  23. Neuberger J. Prediction of survival for patients with fulminant hepatic failure. Hepatology. 2005 Jan;41(1):19-22. PMID 15690476.


Template:Digestive system surgical procedures

de:Leberdialyse