Hyperventilation

Jump to navigation Jump to search

WikiDoc Resources for Hyperventilation

Articles

Most recent articles on Hyperventilation

Most cited articles on Hyperventilation

Review articles on Hyperventilation

Articles on Hyperventilation in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Hyperventilation

Images of Hyperventilation

Photos of Hyperventilation

Podcasts & MP3s on Hyperventilation

Videos on Hyperventilation

Evidence Based Medicine

Cochrane Collaboration on Hyperventilation

Bandolier on Hyperventilation

TRIP on Hyperventilation

Clinical Trials

Ongoing Trials on Hyperventilation at Clinical Trials.gov

Trial results on Hyperventilation

Clinical Trials on Hyperventilation at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Hyperventilation

NICE Guidance on Hyperventilation

NHS PRODIGY Guidance

FDA on Hyperventilation

CDC on Hyperventilation

Books

Books on Hyperventilation

News

Hyperventilation in the news

Be alerted to news on Hyperventilation

News trends on Hyperventilation

Commentary

Blogs on Hyperventilation

Definitions

Definitions of Hyperventilation

Patient Resources / Community

Patient resources on Hyperventilation

Discussion groups on Hyperventilation

Patient Handouts on Hyperventilation

Directions to Hospitals Treating Hyperventilation

Risk calculators and risk factors for Hyperventilation

Healthcare Provider Resources

Symptoms of Hyperventilation

Causes & Risk Factors for Hyperventilation

Diagnostic studies for Hyperventilation

Treatment of Hyperventilation

Continuing Medical Education (CME)

CME Programs on Hyperventilation

International

Hyperventilation en Espanol

Hyperventilation en Francais

Business

Hyperventilation in the Marketplace

Patents on Hyperventilation

Experimental / Informatics

List of terms related to Hyperventilation

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Jyostna Chouturi, M.B.B.S [2], Amresh Kumar MD [3], Vindhya BellamKonda, M.B.B.S [4]


Overview

Hyperventilation is the state of rapid breathing which results in the reduction in carbon dioxide levels (below normal) thereby leading to hypocapnia.[1] During rapid breathing, the body loses more carbon dioxide (CO2) than it can produce resulting in net reduction of CO2 levels. This state of rapid/faster breathing is most commonly seen in stress and anxiety and termed as hyperventilation syndrome. Kussmaul breathing is also a type of hyperventilation and done to reduce the acidity of body as seen in metabolic acidosis. Hyperventilation may also be voluntarily manifested following episodes of rapid deep breathing. The symptoms of hyperventilation are variable. Some patients are completely asymptomatic while others may present with minimal symptoms such as headache and numbness or tingling in the hands, feet and lips. More severe symptoms include dizziness, lightheadedness, and fainting. Some patient also report having chest pain and slurred speech particularly when accompanied by the Valsalva maneuver. Voluntary deep breathing and induction of hyperventilation is a common practice among young individuals to attain focus and adrenaline rush. Other similar terms that are completely different from hyperventilation include hyperpnea and tachypnea.

Hyperpnea is commonly seen with exercise or any major physical activity as well as in response to hypoxic states. In these conditions the energy demand of the body either goes up or is not adequately met. To meet this energy deficit, the body increases the depth and rate of breathing which is known as hyperpnea. Other common examples of hyperpneic state include sepsis, anemia, and individuals living at high altitudes. Tachypnea is derived from a Greek word which means "rapid breathing". Tachypnea means rapid and shallow breathing and is also seen with exercise as a compensatory mechanism to increase the oxygen content of the body.

Causes

Following are the various causes of hyperventilation.

Life-Threatening Causes

Common Causes

Causes by Organ System

Cardiovascular Cheyne-stokes respirations, congestive cardiac failure,pulmonary embolism, stroke
Chemical/Poisoning Ammonium chloride ,camphor ,glycol ether ,inhalation of irritants,methanol ,Salicylate poisoning,
Dental No underlying causes
Dermatologic No underlying causes
Drug Side Effect Aminophylline, aspirin, coffee abuse, pralidoxime, tiagabine
Ear Nose Throat No underlying causes
Endocrine Diabetic ketoacidosis, renal disease
Environmental Acute stress disorder
Gastroenterologic Abdominal surgery, acute liver failure, acute porphyria, end stage liver failure , hepatic cirrhosis, intestinal fistula, pyloric stenosis
Genetic Acute porphyria, arginosuccinic aciduria, carbamoylphosphate synthetase 1 deficiency disease, carbonic anhydrase va deficiency, hereditary fructose-1,6-bisphosphatase deficiency, Pitt-hopkins syndrome
Hematologic Acute porphyria
Iatrogenic No underlying causes
Infectious Disease CNS infection, fever
Musculoskeletal/Orthopedic Hip cancer
Neurologic Altitude sickness, acute, brain trauma, central neurogenic hyperventilation, cerebrovascular accident, CNS infection, cree leukoencephalopathy , damaged respiratory pathways, epilepsy, epileptic encephalopathy, early infantile, 2, head injury, intracranial space-occupying lesion, meningoencephalitis, pain, Pitt-hopkins syndrome, raised intracranial pressure, stroke, Vasovagal attacks
Nutritional/Metabolic Diabetic ketoacidosis, hereditary fructose-1,6-bisphosphatase deficiency, heat stroke, lactic acidosis
Obstetric/Gynecologic No underlying causes
Oncologic Bronchial neoplasm, rib tumor
Ophthalmologic No underlying causes
Overdose/Toxicity Biguanide intolerance
Psychiatric Acute stress disorder , adult panic-anxiety syndrome, agoraphobia, anxiety , Briquet's syndrome, combat stress reaction , cree leukoencephalopathy , crying or severe distress, Da costa syndrome, depression, distress, excitement, fear, functional disorders, grief, hypochondriasis, hysteria, malingering, pain, panic attack , phobia, primary habit disorder, Rett's syndrome, schizophrenia, stress, strong emotions
Pulmonary Acute altitude sickness, apneustic respirations, asthma, ataxic respiration, biot's respiration, central neurogenic hyperventilation, Cheyne-stokes respirations, damaged respiratory pathways, diffuse pulmonary fibrosis, emphysema , hyperventilation syndrome, inhalation of irritants, lung damage, metabolic acidosis , persistent hypoxemia, pleural effusion, pneumonia, pneumothorax, pulmonary embolism, pulmonary oedema
Renal/Electrolyte Acid-base imbalance , metabolic acidosis , phaeochromocytoma, renal disease
Rheumatology/Immunology/Allergy Asthma, pseudoallergic reactions
Sexual No underlying causes
Trauma Brain trauma, head injury, lung damage, raised intracranial pressure, sponatneous pneumothorax, stroke, surgical relocation of ureters in ileum or colon
Urologic Surgical relocation of ureters in ileum or colon
Miscellaneous Abdominal surgery, adulation, childbirth, fever

Causes in Alphabetical Order

The unnamed parameter 2= is no longer supported. Please see the documentation for {{columns-list}}.
3

Mechanism

Under normal conditions, breathing is regulated by the central nervous system (CNS). The CNS regulates the depth and frequency of each breath to maintain normal levels of carbon dioxide (CO2) and oxygen (O2) in the blood and tissues. The CNS measures the amount of CO2 in the body to regulate the breathing process. As the CO2 and O2 gas exchange mechanism is simultaneous and continuous, any condition resulting in increased high carbon dioxide concentration primarily signals a low oxygen concentration. In addition, metabolism in the body uses O2 and results in the production of CO2 as a byproduct.

Under physiologic conditions, the volume of alveolar gas is in equilibrium with the arterial gas. With each breath approximately 10% of the alveolar gas is replaced with atmospheric air. The rate and depth of breathing determines the level of CO2 in the body. A rapid and deep breath will lead to a better alveolar - atmospheric gas exchange leading to low CO2 levels. It is to be noted that atmospheric air has 21% O2 content as compared to just 0.03% of CO2 content resulting in low CO2 content (hypocapnia) with each rapid and deep breath.

Majority of the CO2 in human body is stored as carbonic acid and is a major factor in determining the acidity of the body. Loss of CO2 results in blood becoming more alkaline and increase in blood pH. In the normal person, the resultant alkalosis would automatically be countered by reduced breathing except when the neural control is altered or disturbed.

Conditions causing high CO2 levels (hypercapnia) results in the body assuming that the O2 levels are low. As a result, to increase the O2 supply the blood vessels in the brain dilate. Alternatively, hypocapnia results in constriction of brain's blood vessels causing diminished blood flow leading to lightheadedness. Thus, though it seems counterintuitive, breathing too much can result in a decrease in the oxygen supply to the brain. Physicians often artificially induce hyperventilation after head injury to reduce the intracranial pressure, although the treatment has potential risks.[2]

The level of serum calcium is also regulated by the acid-base balance in the body. Ionised calcium is bound by the negatively charged albumin. Alkaline promoting conditions lead to reflex respiratory hypoventilation and may lead to decreased serum calcium level. Increased Co2 levels tends to bind more of ionised calcium which ultimately results in low calcium levels.

Differentiating hyperventilation from other diseases:

Abbreviations: ABG (arterial blood gas); ACE (angiotensin converting enzyme); βhCG (beta human chorionic gonadotropin); BMP (basic metabolic panel); BNP (brain natriuretic peptide); CBC (complete blood count); COPD (chronic obstructive pulmonary disease); CSF (cerebrospinal fluid); CXR (chest X-ray); CT (computed tomography); DLCO (diffusing capacity of the lung for carbon monoxide); DOE (dyspnea on exercise); ECG (electrocardiogram); FEF (forced expiratory flow rate); FEV1 (forced expiratory volume); FT4 (free T4); FVC (forced vital capacity); HRCT (high resolution computed tomography); JVD (jugular vein distention); LFTs (liver function tests); MCV (mean corpuscular volume); MEN (multiple endocrine neoplasia); MRI (magnetic resonance imaging); P2 (pulmonic heart sound); Plt (platelet); PT (prothrombin time); RBC (red blood cell); RV (residual volume); SIADH (syndrome of inappropriate antidiuretic hormone); S3 ( third heart sound); S4 (fourth heart sound); T3 ((Triiodothyronine); TLC (total lung capacity); TSH (thyroid stimulating hormone); VC (vital capacity); VMA(vanillylmandelic acid); Vt (tidal volume); WBC (white blood cell);

Organ system Diseases Clinical manifestations Diagnosis Other features
Symptoms Physical exam
Chest pain Dyspnea Fever Palpitations Cyanosis Tachypnea JVD Peripheral edema Auscultation ABGs Lab findings Imaging PFT Gold standard
Pulmonary system Pneumothorax[3] + + + + + + _ _ O2, ↑CO2, _ X- ray - Vt
Pulmonary embolism[4] + + + + + + - - Respiratory alkalosis Normal
Pneumonia[5] + + + + + + - - Normal Normal
Exacerbation of asthma/COPD[6] - + - + + + - -
Interstitial lung disease[7][8] + + -/+ + + + -/+ - _
  • CXR- Reticular infiltrates
  • Honey combing
Intrapulmonary shunt[9] +/- + - - + +/- - - Diminished breath sounds O2, ↑CO2,

Vt, ↑RV (physiological)

Pulmonary CT angiography
Upper airway obstruction[10] -/+ + - -/+ -/+ + -/+ - Inspiratory stridor _ VC
High altitude sickness[11][12][13] - + +/- + +/- + - +
  • EKG- Right sided heart strain
FVC
  • Test in a hypobaric chamber with and without supplemental O2-breathing
Cardiovascular system Acute coronary syndrome[14] + + - +/- +/- +/- +/- +/- _ _
Heart failure[15] +/- + - +/- + +/- + + S3 Respiratory alkalosis CXR shows Vt B-type natriuretic peptide (BNP) and N-terminal proBNP (NT-proBNP)
Dysrhythmias[14] +/- + - + - +/- - - High pulse rate Normal Normal Normal ECG
Shock[16][17] +/- +/- + +/- +/- +/- +/- +/- WBC
Metabolic/Systemic disorders Diabetic ketoacidosis[18] - + +/- - - - - - Metabolic acidosis Normal Normal Blood test (acidosis, hyperglycemia, ketonemia)
Hypocalcemia[19][20] - + + + +/- - - Respiratory alkalosis Normal Serum Ionized Calcium
Hypoglycemia[21][22] - +/- - +/- - - - - Rales, rhonchi or crackles Normal Normal 72-hour supervised fasting test
Endocrine system Hyperthyroidism[23][24] +/- + - +/- - +/- - - Systolic hypertension with wide pulse pressure O2, ↑CO2, Respiratory acidosis Normal Serum TSH level
Pheochromocytoma[25][26] - + +/- + - +/- - - Asymmetric chest expansion Normal Normal
CNS Central nervous system tumor[27][28] - +/- - - - +/- - - Normal O2, ↑CO2, Respiratory acidosis

(in some brain tumor)

Normal
Anxiety/panic attacks[29] +/- + - +/- - - - - Normal Normal Normal Normal Normal
Others Pregnancy[30] +/- + - - - - - +/- Normal O2, ↑CO2 WBC, RBC Normal Vt, ↑RV βhCG
Hepatic failure[31][32] - +/- +/- +/- +/- + + + Right ventricular gallop O2, ↓CO2

Respiratory alkalosis

Normal Liver biopsy
Sepsis[33] - + + +/- - - - - Normal O2, ↑CO2

↑WBC, neutrophilia

Normal Normal SIRS criteria

References

  1. Kenneth Baillie and Alistair Simpson. [ttp://www.altitude.org/calculators/oxygencalculator/oxygencalculator.htm "Hyperventilation calculator"]. Apex (Altitude Physiology EXpeditions). Retrieved 2006-08-10. - Online interactive oxygen delivery calculator that mimicks hyperventilation
  2. Stocchetti N, Maas AI, Chieregato A, van der Plas AA (2005). "Hyperventilation in head injury: a review". Chest. 127 (5): 1812–27. doi:10.1378/chest.127.5.1812. PMID 15888864.
  3. Currie GP, Alluri R, Christie GL, Legge JS (2007). "Pneumothorax: an update". Postgrad Med J. 83 (981): 461–5. doi:10.1136/pgmj.2007.056978. PMC 2600088. PMID 17621614.
  4. Bĕlohlávek J, Dytrych V, Linhart A (2013). "Pulmonary embolism, part I: Epidemiology, risk factors and risk stratification, pathophysiology, clinical presentation, diagnosis and nonthrombotic pulmonary embolism". Exp Clin Cardiol. 18 (2): 129–38. PMC 3718593. PMID 23940438.
  5. Simonetti AF, Viasus D, Garcia-Vidal C, Carratalà J (2014). "Management of community-acquired pneumonia in older adults". Ther Adv Infect Dis. 2 (1): 3–16. doi:10.1177/2049936113518041. PMC 4072047. PMID 25165554.
  6. Qureshi H, Sharafkhaneh A, Hanania NA (2014). "Chronic obstructive pulmonary disease exacerbations: latest evidence and clinical implications". Ther Adv Chronic Dis. 5 (5): 212–27. doi:10.1177/2040622314532862. PMC 4131503. PMID 25177479.
  7. Bohadana A, Izbicki G, Kraman SS (2014). "Fundamentals of lung auscultation". N Engl J Med. 370 (8): 744–51. doi:10.1056/NEJMra1302901. PMID 24552321.
  8. Spicknall KE, Zirwas MJ, English JC (2005). "Clubbing: an update on diagnosis, differential diagnosis, pathophysiology, and clinical relevance". J Am Acad Dermatol. 52 (6): 1020–8. doi:10.1016/j.jaad.2005.01.006. PMID 15928621.
  9. Vodoz JF, Cottin V, Glérant JC, Derumeaux G, Khouatra C, Blanchet AS; et al. (2009). "Right-to-left shunt with hypoxemia in pulmonary hypertension". BMC Cardiovasc Disord. 9: 15. doi:10.1186/1471-2261-9-15. PMC 2671488. PMID 19335916.
  10. Darras KE, Roston AT, Yewchuk LK (2015). "Imaging Acute Airway Obstruction in Infants and Children". Radiographics. 35 (7): 2064–79. doi:10.1148/rg.2015150096. PMID 26495798.
  11. Basnyat B, Murdoch DR (2003). "High-altitude illness". Lancet. 361 (9373): 1967–74. doi:10.1016/S0140-6736(03)13591-X. PMID 12801752.
  12. Schoene RB (2008). "Illnesses at high altitude". Chest. 134 (2): 402–416. doi:10.1378/chest.07-0561. PMID 18682459.
  13. Stream JO, Grissom CK (2008). "Update on high-altitude pulmonary edema: pathogenesis, prevention, and treatment". Wilderness Environ Med. 19 (4): 293–303. doi:10.1580/07-WEME-REV-173.1. PMID 19099331.
  14. 14.0 14.1 Bruyninckx R, Aertgeerts B, Bruyninckx P, Buntinx F (2008). "Signs and symptoms in diagnosing acute myocardial infarction and acute coronary syndrome: a diagnostic meta-analysis". Br J Gen Pract. 58 (547): 105–11. doi:10.3399/bjgp08X277014. PMC 2233977. PMID 18307844.
  15. Gaggin, Hanna K.; Januzzi, James L. (2013). "Biomarkers and diagnostics in heart failure". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1832 (12): 2442–2450. doi:10.1016/j.bbadis.2012.12.014. ISSN 0925-4439.
  16. Churpek MM, Zadravecz FJ, Winslow C, Howell MD, Edelson DP (2015). "Incidence and Prognostic Value of the Systemic Inflammatory Response Syndrome and Organ Dysfunctions in Ward Patients". Am J Respir Crit Care Med. 192 (8): 958–64. doi:10.1164/rccm.201502-0275OC. PMC 4642209. PMID 26158402.
  17. Kelly AM, Kyle E, McAlpine R (2002). "Venous pCO(2) and pH can be used to screen for significant hypercarbia in emergency patients with acute respiratory disease". J Emerg Med. 22 (1): 15–9. PMID 11809551.
  18. Westerberg DP (2013). "Diabetic ketoacidosis: evaluation and treatment". Am Fam Physician. 87 (5): 337–46. PMID 23547550.
  19. Tohme JF, Bilezikian JP (1993). "Hypocalcemic emergencies". Endocrinol Metab Clin North Am. 22 (2): 363–75. PMID 8325292.
  20. Cooper MS, Gittoes NJ (2008). "Diagnosis and management of hypocalcaemia". BMJ. 336 (7656): 1298–302. doi:10.1136/bmj.39582.589433.BE. PMC 2413335. PMID 18535072.
  21. Hepburn DA, Deary IJ, Frier BM, Patrick AW, Quinn JD, Fisher BM (1991). "Symptoms of acute insulin-induced hypoglycemia in humans with and without IDDM. Factor-analysis approach". Diabetes Care. 14 (11): 949–57. PMID 1797507.
  22. Towler DA, Havlin CE, Craft S, Cryer P (1993). "Mechanism of awareness of hypoglycemia. Perception of neurogenic (predominantly cholinergic) rather than neuroglycopenic symptoms". Diabetes. 42 (12): 1791–8. PMID 8243825.
  23. Iglesias P, Acosta M, Sánchez R, Fernández-Reyes MJ, Mon C, Díez JJ (2005). "Ambulatory blood pressure monitoring in patients with hyperthyroidism before and after control of thyroid function". Clin Endocrinol (Oxf). 63 (1): 66–72. doi:10.1111/j.1365-2265.2005.02301.x. PMID 15963064.
  24. Forfar JC, Muir AL, Sawers SA, Toft AD (1982). "Abnormal left ventricular function in hyperthyroidism: evidence for a possible reversible cardiomyopathy". N Engl J Med. 307 (19): 1165–70. doi:10.1056/NEJM198211043071901. PMID 7121544.
  25. Neumann HP, Pawlu C, Peczkowska M, Bausch B, McWhinney SR, Muresan M; et al. (2004). "Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations". JAMA. 292 (8): 943–51. doi:10.1001/jama.292.8.943. PMID 15328326.
  26. Bravo EL (1991). "Pheochromocytoma: new concepts and future trends". Kidney Int. 40 (3): 544–56. PMID 1787652.
  27. Forsyth PA, Posner JB (1993). "Headaches in patients with brain tumors: a study of 111 patients". Neurology. 43 (9): 1678–83. PMID 8414011.
  28. Valentinis L, Tuniz F, Valent F, Mucchiut M, Little D, Skrap M; et al. (2010). "Headache attributed to intracranial tumours: a prospective cohort study". Cephalalgia. 30 (4): 389–98. doi:10.1111/j.1468-2982.2009.01970.x. PMID 19673912.
  29. Taylor CB (2006). "Panic disorder". BMJ. 332 (7547): 951–5. doi:10.1136/bmj.332.7547.951. PMC 1444835. PMID 16627512.
  30. Lee SY, Chien DK, Huang CH, Shih SC, Lee WC, Chang WH (2017). "Dyspnea in pregnancy". Taiwan J Obstet Gynecol. 56 (4): 432–436. doi:10.1016/j.tjog.2017.04.035. PMID 28805596.
  31. Lee WM (1993). "Acute liver failure". N Engl J Med. 329 (25): 1862–72. doi:10.1056/NEJM199312163292508. PMID 8305063.
  32. Gill RQ, Sterling RK (2001). "Acute liver failure". J Clin Gastroenterol. 33 (3): 191–8. PMID 11500606.
  33. Askim Å, Mehl A, Paulsen J, DeWan AT, Vestrheim DF, Åsvold BO; et al. (2016). "Epidemiology and outcome of sepsis in adult patients with Streptococcus pneumoniae infection in a Norwegian county 1993-2011: an observational study". BMC Infect Dis. 16: 223. doi:10.1186/s12879-016-1553-8. PMC 4877975. PMID 27216810.

See also

Template:Skin and subcutaneous tissue symptoms and signs Template:Nervous and musculoskeletal system symptoms and signs Template:Urinary system symptoms and signs Template:Cognition, perception, emotional state and behaviour symptoms and signs Template:Speech and voice symptoms and signs Template:General symptoms and signs

Template:WH Template:WS