Pneumomediastinum overview

Jump to navigation Jump to search

Pneumomediastinum Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Pneumomediastinum from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Case Studies

Case #1

Pneumomediastinum overview On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Pneumomediastinum overview

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Pneumomediastinum overview

CDC on Pneumomediastinum overview

Pneumomediastinum overview in the news

Blogs on Pneumomediastinum overview

Directions to Hospitals Treating Pneumomediastinum

Risk calculators and risk factors for Pneumomediastinum overview

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Trusha Tank, M.D.[2]

Overview

Pneumomediastinum (from Greek pneuma - "air", also known as mediastinal emphysema) is a condition in which air is present in the mediastinum.

The condition can result from physical trauma or other situations that lead to high pressure within the alveoli of the lung, causing them to burst and leak air into the chest cavity.

Historical Perspective

The condition was first described in 1819 by René Laennec.

Classification

Pneumomediastinum is classified according to cause into spontaneous pneumomediastinum and secondary pneumomediastinum. Both the categories have multiple causes. Pneumomediastinum can also be classified according to the entry of air into the mediastinal cavity: Head/neck/upper respiratory tract, lower respiratory tract, lung, gastrointestinal tract, or external sources

Pathophysiology

Pneumomediastinum can happen when pressure rises in the lungs and causes the air sacs (alveoli) to rupture. Another possible cause is damage to the lungs or other nearby structures that allow air to leak into the center of the chest.

Causes

Spontaneous pneumomediastinum may be caused without any underlying pathology. Secondary pneumomediastinum may be caused by blunt or penetrating trauma to the neck, chest or abdomen. Iatrogenic causes include disruption of the airway or GI tract during endoscopic procedures, intubation/extubation, central vascular access procedure, pleural cavity instrumentation, chest or abdominal surgery. Pneumomediastinum has also been associated with: Mycoplasma pneumoniae pneumonia, anorexia, obesity and pulmonary barotrauma in Scuba diver, a free-diver, or an airplane passenger during rapid ascends or descends.

Differentiating [disease name] from other Diseases

  • [Disease name] must be differentiated from other diseases that cause [clinical feature 1], [clinical feature 2], and [clinical feature 3], such as:
  • [Differential dx1]
  • [Differential dx2]
  • [Differential dx3]

Epidemiology and Demographics

Pneumomediastinum is a rare condition. Epidemiology of pneumomediastinum reflects the epidemiology of diseases associated with the condition. Spontaneous pneumomediastinum is more common in young men and pregnant women. Infants have high incidence rates of pneumomediastinum.

Risk Factors

Factors that can increase the chances of pneumomediastinum include age: Infants and young adults are at high risk. Gender: Males have a higher incident rate than females. A tall, lean, male body habitus is generally considered as the most probable to be presented with pneumomediastinum; however, obese patients are not spared from this pathology. Preexisting pulmonary disease: People with lung diseases such as asthma, bronchiectasis, cystic fibrosis, COPD, interstitial lung disease, and cysts, are at higher risk of the pneumomediastinum.

Natural History, Complications and Prognosis

Pneumomediastinum is considered a benign entity with good prognosis. The main symptom of pneumomediastinum is chest pain. The onset of the pain is sudden and acute or follows exacerbations of underlying pathology such as asthma. Spontaneous pneumomediastinum usually resolves by itself, but prolonged cases have also been reported (>2 months). There also have been incidences of recurrence.

Diagnosis

Diagnostic Criteria

There are no specific criteria to diagnose pneumomediastinum.

Symptoms

The clinical presentation of pneumomediastinum depends on the causative or precipitating factor such as exacerbation of asthma, Boerhaave syndrome or pneumonia. Common symptoms of pneumomediastinum include severe, acute pain in the chest(pain may radiate to the shoulders or back), fever, subcutaneous emphysema, shortness of breath, cervical pain, jaw pain, dysphonia, dysphagia, emesis or swelling of neck, face, chest, abdomen or shoulder.

Physical Examination

In spontaneous pneumomediastinum, the patient appears normal. Patient with pneumomediastinum secondary to an exacerbation of asthma may appear distressed. On physical examination, the most pathognomic sign of pneumomediastinum is Hamman's sign, which is mediastinal crunch or click present on auscultation over the cardiac apex and the left sternal border synchronous with the heartbeat. Subcutaneous emphysema can also be detected in a patient with pneumomediastinum.

Laboratory Findings

There are no specific laboratory findings associated with pneumomediastinum.

Imaging Findings

  • There are no [imaging study] findings associated with [disease name].
  • [Imaging study 1] is the imaging modality of choice for [disease name].
  • On [imaging study 1], [disease name] is characterized by [finding 1], [finding 2], and [finding 3].
  • [Imaging study 2] may demonstrate [finding 1], [finding 2], and [finding 3].

Other Diagnostic Studies

  • [Disease name] may also be diagnosed using [diagnostic study name].
  • Findings on [diagnostic study name] include [finding 1], [finding 2], and [finding 3].

Treatment

Medical Therapy

  • There is no treatment for [disease name]; the mainstay of therapy is supportive care.
  • The mainstay of therapy for [disease name] is [medical therapy 1] and [medical therapy 2].
  • [Medical therapy 1] acts by [mechanism of action 1].
  • Response to [medical therapy 1] can be monitored with [test/physical finding/imaging] every [frequency/duration].

Surgery

  • Surgery is the mainstay of therapy for [disease name].
  • [Surgical procedure] in conjunction with [chemotherapy/radiation] is the most common approach to the treatment of [disease name].
  • [Surgical procedure] can only be performed for patients with [disease stage] [disease name].

Prevention

  • There are no primary preventive measures available for [disease name].
  • Effective measures for the primary prevention of [disease name] include [measure1], [measure2], and [measure3].
  • Once diagnosed and successfully treated, patients with [disease name] are followed-up every [duration]. Follow-up testing includes [test 1], [test 2], and [test 3].

References

Template:WH Template:WS