Carbonyl reductase 1, also known as CBR1, is an enzyme which in humans is encoded by the CBR1gene.[1][2][3] The protein encoded by this gene belongs to the short-chain dehydrogenases/reductases (SDR) family, which function as NADPH-dependent oxidoreductases having wide specificity for carbonyl compounds, such as quinones, prostaglandins, and various xenobiotics. Alternatively spliced transcript variants have been found for this gene.[1]
Carbonyl reductase is one of several monomeric, NADPH-dependent oxidoreductases having wide specificity for carbonyl compounds. This enzyme is widely distributed in human tissues. Another carbonyl reductase gene, CRB3, lies close to this gene on chromosome 21q.[1] CBR1 metabolizes many toxic environmental quinones and pharmacological relevant substrates such as the anticancer doxorubicin.[4] Several studies have shown that CBR1 plays a protective role in oxidative stress, neurodegeneration, and apoptosis.[5] In addition, CBR1 inactivates lipid aldehydes during oxidative stress in cells. Therefore, CBR1 may play a beneficial role in protecting against cellular damage resulting from oxidative stress.[6]
Polymorphisms
Up-to-date two non-synonymous polymorphisms on CBR1 have been identified. The CBR1 V88I polymorphism encodes for a valine-to-isoleucin substitution at position 88 of the aminoacid chain. In vitro studies with recombinant proteins indicate that the CBR1 V88 isoform has a higher Vmax towards the substrates menadione (vitamin K3) and daunorubicin.[7] Recent studies in human liver cytosols show that an untranslated polymorphism on the 3'UTR region of the CBR1 gene (rs9024)[8] is associated with higher levels of the cardiotoxic metabolite doxorubicinol.[9]
CBR1 has been reported to relate to tumor progression.[12] Suppression of CBR1 expression was associated with poor prognosis in uterine endometrial cancer and uterine cervical squamous cell carcinoma.[12] Previous studies showed that decreased CBR1 expression is associated with lymph node metastasis and poor prognosis in ovarian cancer, and induction of CBR1 expression in ovarian tumors leads to a spontaneous decrease in tumor size.[13]
Recent study demonstrates that CBR1 attenuates apoptosis and promotes cell survival in pancreatic β cell lines under glucotoxic and glucolipotoxic conditions via reducing ROS generation. Their data demonstrates that CBR1 expression level and enzyme activity are decreased in pancreatic islets isolated from db/db mice, an animal model of type 2 diabetes. These results suggest that CBR1 may play a role in protecting pancreatic β-cells against oxidative stress under glucotoxic or glucolipotoxic conditions, and its reduced expression or activity may contribute to β-cell dysfunction in db/db mice or human type 2 diabetes.[10]
In addition, CBR1 may play a critical role in PGF2α synthesis in human amnionfibroblasts, and cortisol promotes the conversion of PGE2 into PGF2α via glucocorticoid receptor (GR)-mediated induction of CBR1 in human amnionfibroblasts. This stimulatory effect of cortisol on CBR1 expression may partly explain the concurrent increases of cortisol and PGF2α in human amnion tissue with labor, and these findings may account for the increased production of PGF2α in the fetal membranes prior to the onset of labor.[14]
↑Wermuth B, Platts KL, Seidel A, Oesch F (Apr 1986). "Carbonyl reductase provides the enzymatic basis of quinone detoxication in man". Biochemical Pharmacology. 35 (8): 1277–82. doi:10.1016/0006-2952(86)90271-6. PMID3083821.
↑Ismail E, Al-Mulla F, Tsuchida S, Suto K, Motley P, Harrison PR, Birnie GD (Mar 2000). "Carbonyl reductase: a novel metastasis-modulating function". Cancer Research. 60 (5): 1173–6. PMID10728668.
↑Maser E (Feb 2006). "Neuroprotective role for carbonyl reductase?". Biochemical and Biophysical Research Communications. 340 (4): 1019–22. doi:10.1016/j.bbrc.2005.12.113. PMID16406002.
↑ 10.010.1Rashid MA, Lee S, Tak E, Lee J, Choi TG, Lee JW, Kim JB, Youn JH, Kang I, Ha J, Kim SS (Nov 2010). "Carbonyl reductase 1 protects pancreatic β-cells against oxidative stress-induced apoptosis in glucotoxicity and glucolipotoxicity". Free Radical Biology & Medicine. 49 (10): 1522–33. doi:10.1016/j.freeradbiomed.2010.08.015. PMID20728534.
↑Wermuth B (Feb 1981). "Purification and properties of an NADPH-dependent carbonyl reductase from human brain. Relationship to prostaglandin 9-ketoreductase and xenobiotic ketone reductase". The Journal of Biological Chemistry. 256 (3): 1206–13. PMID7005231.
↑ 12.012.1Murakami, A; Yakabe, K; Yoshidomi, K; Sueoka, K; Nawata, S; Yokoyama, Y; Tsuchida, S; Al-Mulla, F; Sugino, N (1 October 2012). "Decreased carbonyl reductase 1 expression promotes malignant behaviours by induction of epithelial mesenchymal transition and its clinical significance". Cancer letters. 323 (1): 69–76. doi:10.1016/j.canlet.2012.03.035. PMID22542806.
↑Osawa, Y; Yokoyama, Y; Shigeto, T; Futagami, M; Mizunuma, H (March 2015). "Decreased expression of carbonyl reductase 1 promotes ovarian cancer growth and proliferation". International journal of oncology. 46 (3): 1252–8. doi:10.3892/ijo.2014.2810. PMID25572536.
↑Yagi, H; Conroy, PJ; Leung, EW; Law, RH; Trapani, JA; Voskoboinik, I; Whisstock, JC; Norton, RS (16 October 2015). "Structural Basis for Ca2+-mediated Interaction of the Perforin C2 Domain with Lipid Membranes". The Journal of Biological Chemistry. 290 (42): 25213–26. doi:10.1074/jbc.m115.668384. PMID26306037.
↑Nelson, SH; Grunebaum, H (April 1971). "A follow-up study of wrist slashers". The American Journal of Psychiatry. 127 (10): 1345–9. doi:10.1176/ajp.127.10.1345. PMID5549925.
Wirth H, Wermuth B (Dec 1992). "Immunohistochemical localization of carbonyl reductase in human tissues". The Journal of Histochemistry and Cytochemistry. 40 (12): 1857–63. doi:10.1177/40.12.1453004. PMID1453004.
Inazu N, Ruepp B, Wirth H, Wermuth B (Mar 1992). "Carbonyl reductase from human testis: purification and comparison with carbonyl reductase from human brain and rat testis". Biochimica et Biophysica Acta. 1116 (1): 50–6. doi:10.1016/0304-4165(92)90127-g. PMID1540623.
Forrest GL, Akman S, Doroshow J, Rivera H, Kaplan WD (Oct 1991). "Genomic sequence and expression of a cloned human carbonyl reductase gene with daunorubicin reductase activity". Molecular Pharmacology. 40 (4): 502–7. PMID1921984.
Forrest GL, Akman S, Krutzik S, Paxton RJ, Sparkes RS, Doroshow J, Felsted RL, Glover CJ, Mohandas T, Bachur NR (Apr 1990). "Induction of a human carbonyl reductase gene located on chromosome 21". Biochimica et Biophysica Acta. 1048 (2–3): 149–55. doi:10.1016/0167-4781(90)90050-c. PMID2182121.
Wermuth B, Platts KL, Seidel A, Oesch F (Apr 1986). "Carbonyl reductase provides the enzymatic basis of quinone detoxication in man". Biochemical Pharmacology. 35 (8): 1277–82. doi:10.1016/0006-2952(86)90271-6. PMID3083821.
Wermuth B, Bohren KM, Heinemann G, von Wartburg JP, Gabbay KH (Nov 1988). "Human carbonyl reductase. Nucleotide sequence analysis of a cDNA and amino acid sequence of the encoded protein". The Journal of Biological Chemistry. 263 (31): 16185–8. PMID3141401.
Wermuth B (Feb 1981). "Purification and properties of an NADPH-dependent carbonyl reductase from human brain. Relationship to prostaglandin 9-ketoreductase and xenobiotic ketone reductase". The Journal of Biological Chemistry. 256 (3): 1206–13. PMID7005231.
Wermuth B, Mäder-Heinemann G, Ernst E (Mar 1995). "Cloning and expression of carbonyl reductase from rat testis". European Journal of Biochemistry / FEBS. 228 (2): 473–9. doi:10.1111/j.1432-1033.1995.tb20286.x. PMID7705364.
Lemieux N, Malfoy B, Forrest GL (Jan 1993). "Human carbonyl reductase (CBR) localized to band 21q22.1 by high-resolution fluorescence in situ hybridization displays gene dosage effects in trisomy 21 cells". Genomics. 15 (1): 169–72. doi:10.1006/geno.1993.1024. PMID8432528.
Watanabe K, Sugawara C, Ono A, Fukuzumi Y, Itakura S, Yamazaki M, Tashiro H, Osoegawa K, Soeda E, Nomura T (Aug 1998). "Mapping of a novel human carbonyl reductase, CBR3, and ribosomal pseudogenes to human chromosome 21q22.2". Genomics. 52 (1): 95–100. doi:10.1006/geno.1998.5380. PMID9740676.
Tinguely JN, Wermuth B (Feb 1999). "Identification of the reactive cysteine residue (Cys227) in human carbonyl reductase". European Journal of Biochemistry / FEBS. 260 (1): 9–14. doi:10.1046/j.1432-1327.1999.00089.x. PMID10091578.
Finckh C, Atalla A, Nagel G, Stinner B, Maser E (Jan 2001). "Expression and NNK reducing activities of carbonyl reductase and 11beta-hydroxysteroid dehydrogenase type 1 in human lung". Chemico-Biological Interactions. 130-132 (1–3): 761–73. doi:10.1016/S0009-2797(00)00306-9. PMID11306092.
Balcz B, Kirchner L, Cairns N, Fountoulakis M, Lubec G (2002). "Increased brain protein levels of carbonyl reductase and alcohol dehydrogenase in Down syndrome and Alzheimer's disease". Journal of Neural Transmission. Supplementum (61): 193–201. doi:10.1007/978-3-7091-6262-0_15. PMID11771743.
Skálová L, Nobilis M, Szotáková B, Kondrová E, Savlík M, Wsól V, Pichard-Garcia L, Maser E (Jul 2002). "Carbonyl reduction of the potential cytostatic drugs benfluron and 3,9-dimethoxybenfluron in human in vitro". Biochemical Pharmacology. 64 (2): 297–305. doi:10.1016/S0006-2952(02)01068-7. PMID12123751.
Cheon MS, Shim KS, Kim SH, Hara A, Lubec G (Jul 2003). "Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: Challenging the gene dosage effect hypothesis (Part IV)". Amino Acids. 25 (1): 41–7. doi:10.1007/s00726-003-0009-9. PMID12836057.