Revision as of 22:29, 8 January 2018 by en>Quisqualis(→Clinical significance: removed sentence which was a nonsensical mash-up of an irrelevant (to this article) sentence in the cited source.)
PCNTB, a cDNAhomolog of PCNT, was identified and described by Li et al. to share a sequence identity of 61% and similarity of 75%. However, compared to PCNT, PCNTB contains an additional coiled coil domain and unique 1000-residue C-terminus, suggesting that these two may be separate proteins in a new CPMsuperfamily.[4] As with PCNT, the C-terminus of PCNTB contains functional domains for centriole localization and CEP215 binding. The N-terminus may also contain a functional domain that associates with the C-terminus domain, and this association is required for engagement with the centriole.[11]
Function
The protein encoded by this gene is expressed in the cytoplasm and centrosome throughout the cell cycle, and to a lesser extent, in the nucleus. It is an integral component of the PCM, which is a centrosome scaffold that anchors microtubule nucleating complexes and other centrosomal proteins.[1][4][5][7][11][12] In one model, PCNT complexes with CEP215 and is phosphorylated by PLK1, leading to PCM component recruitment and organization, centrosome maturation, and spindle formation.[6][11] The protein controls the nucleation of microtubules by interacting with the microtubule nucleation component γ-tubulin, thus anchoring the γ-tubulin ring complex to the centrosome, which is essential for bipolar spindle formation and chromosome assembly in early mitosis.[1][5][6][7][8] This ensures normal function and organization of the centrosomes, mitotic spindles, and cytoskeleton, and by extension, regulation over cell cycle progression and checkpoints.[1][5][6][7][12] Downregulation of PCNT disrupted mitotic checkpoints and arrested the cell at the G2/M checkpoint, leading to cell death.[10][12] Moreover, microtubule functioning was also disrupted, resulting in mono- or multipolar spindles, chromosomal misalignment, premature sister chromatid separation, and aneuploidy.[6][12]
PCNT is highly abundant in skeletal muscle, indicating that it may be involved in muscle insulin action.[7] PCNT is also involved in neuronal development through its interaction with DISC1 to regulate microtubule organization.[8]
↑Chen H, Gos A, Morris MA, Antonarakis SE (Aug 1996). "Localization of a human homolog of the mouse pericentrin gene (PCNT) to chromosome 21qter". Genomics. 35 (3): 620–4. doi:10.1006/geno.1996.0411. PMID8812505.
↑ 4.04.14.24.34.44.5Li Q, Hansen D, Killilea A, Joshi HC, Palazzo RE, Balczon R (Feb 2001). "Kendrin/pericentrin-B, a centrosome protein with homology to pericentrin that complexes with PCM-1". Journal of Cell Science. 114 (Pt 4): 797–809. PMID11171385.
↑ 10.010.110.210.3Salemi M, Barone C, Romano C, Salluzzo R, Caraci F, Cantarella RA, Salluzzo MG, Drago F, Romano C, Bosco P (Nov 2013). "Pericentrin expression in Down's syndrome". Neurological Sciences. 34 (11): 2023–5. doi:10.1007/s10072-013-1529-z. PMID23979692.
↑ 11.011.111.211.311.4Lee K, Rhee K (Jul 2012). "Separase-dependent cleavage of pericentrin B is necessary and sufficient for centriole disengagement during mitosis". Cell Cycle. 11 (13): 2476–85. doi:10.4161/cc.20878. PMID22722493.
↑ 12.012.112.212.312.412.5Unal S, Alanay Y, Cetin M, Boduroglu K, Utine E, Cormier-Daire V, Huber C, Ozsurekci Y, Kilic E, Simsek Kiper OP, Gumruk F (Feb 2014). "Striking hematological abnormalities in patients with microcephalic osteodysplastic primordial dwarfism type II (MOPD II): a potential role of pericentrin in hematopoiesis". Pediatric Blood & Cancer. 61 (2): 302–5. doi:10.1002/pbc.24783. PMID24106199.
Further reading
Nakajima D, Okazaki N, Yamakawa H, Kikuno R, Ohara O, Nagase T (Jun 2002). "Construction of expression-ready cDNA clones for KIAA genes: manual curation of 330 KIAA cDNA clones". DNA Research. 9 (3): 99–106. doi:10.1093/dnares/9.3.99. PMID12168954.
Chen H, Gos A, Morris MA, Antonarakis SE (Aug 1996). "Localization of a human homolog of the mouse pericentrin gene (PCNT) to chromosome 21qter". Genomics. 35 (3): 620–4. doi:10.1006/geno.1996.0411. PMID8812505.
Ishikawa K, Nagase T, Nakajima D, Seki N, Ohira M, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O (Oct 1997). "Prediction of the coding sequences of unidentified human genes. VIII. 78 new cDNA clones from brain which code for large proteins in vitro". DNA Research. 4 (5): 307–13. doi:10.1093/dnares/4.5.307. PMID9455477.
Diviani D, Langeberg LK, Doxsey SJ, Scott JD (Apr 2000). "Pericentrin anchors protein kinase A at the centrosome through a newly identified RII-binding domain". Current Biology. 10 (7): 417–20. doi:10.1016/S0960-9822(00)00422-X. PMID10753751.
Hattori M, Fujiyama A, Taylor TD, Watanabe H, Yada T, Park HS, Toyoda A, Ishii K, Totoki Y, Choi DK, Groner Y, Soeda E, Ohki M, Takagi T, Sakaki Y, Taudien S, Blechschmidt K, Polley A, Menzel U, Delabar J, Kumpf K, Lehmann R, Patterson D, Reichwald K, Rump A, Schillhabel M, Schudy A, Zimmermann W, Rosenthal A, Kudoh J, Schibuya K, Kawasaki K, Asakawa S, Shintani A, Sasaki T, Nagamine K, Mitsuyama S, Antonarakis SE, Minoshima S, Shimizu N, Nordsiek G, Hornischer K, Brant P, Scharfe M, Schon O, Desario A, Reichelt J, Kauer G, Blocker H, Ramser J, Beck A, Klages S, Hennig S, Riesselmann L, Dagand E, Haaf T, Wehrmeyer S, Borzym K, Gardiner K, Nizetic D, Francis F, Lehrach H, Reinhardt R, Yaspo ML (May 2000). "The DNA sequence of human chromosome 21". Nature. 405 (6784): 311–9. doi:10.1038/35012518. PMID10830953.
Li Q, Hansen D, Killilea A, Joshi HC, Palazzo RE, Balczon R (Feb 2001). "Kendrin/pericentrin-B, a centrosome protein with homology to pericentrin that complexes with PCM-1". Journal of Cell Science. 114 (Pt 4): 797–809. PMID11171385.
Flory MR, Davis TN (Sep 2003). "The centrosomal proteins pericentrin and kendrin are encoded by alternatively spliced products of one gene". Genomics. 82 (3): 401–5. doi:10.1016/S0888-7543(03)00119-8. PMID12906865.
Miyoshi K, Asanuma M, Miyazaki I, Diaz-Corrales FJ, Katayama T, Tohyama M, Ogawa N (May 2004). "DISC1 localizes to the centrosome by binding to kendrin". Biochemical and Biophysical Research Communications. 317 (4): 1195–9. doi:10.1016/j.bbrc.2004.03.163. PMID15094396.
Golubkov VS, Chekanov AV, Doxsey SJ, Strongin AY (Dec 2005). "Centrosomal pericentrin is a direct cleavage target of membrane type-1 matrix metalloproteinase in humans but not in mice: potential implications for tumorigenesis". The Journal of Biological Chemistry. 280 (51): 42237–41. doi:10.1074/jbc.M510139200. PMID16251193.