ITPKA is one of three inositol-trisphosphate 3-kinase (ITP3K) genes in humans. ITP3K proteins regulate inositol phosphate metabolism by phosphorylation of the second messenger inositol 1,4,5-trisphosphate to produce Ins(1,3,4,5)P4, which is sometimes abbreviated as IP4. Structurally, ITPKA belongs to the inositol polyphosphate kinase (IPK) family. The activity of the inositol 1,4,5-trisphosphate 3-kinase is responsible for regulating the levels of a large number of inositol polyphosphates that are important in cellular signaling, most notably, inositol trisphosphate, which is the enzyme's only substrate. Both calcium/calmodulin and protein phosphorylation mechanisms control its activity. It is also a substrate for the cyclic AMP-dependent protein kinase, calcium/calmodulin- dependent protein kinase II, and protein kinase C in vitro. ITPKA and ITPKB are 68% identical in the C-terminus region The amino- terminal region of ITPKA binds filamentous actin. This property localizes the ITPKA to dendritic spines in principal neurons.[4][5][6] ITPKA is expressed physiologically in neurons, but it is sometimes expressed in cancer cells and may contribute to processes of metastasis.[7]
Physiological function
ITPKA participates in learning and memory processes in neurons.[8][9]
Roles in human disease
Although ITPKA is expressed physiologically in neurons and testis, it sometimes becomes expressed in cancer cells, and the expression usually makes the cancer more aggressive.[7][10]
Relationship to F-tractin
F-tractin is amino acids 9-52 of rat ITPKA. It was later determined that amino acids 9-40 were sufficient for binding filamentous actin.[11][12] When fused to a reporter, such as green fluorescent protein, It is useful for the vsualization of actin dynamics in living cells.[13][14]
References
↑Erneux C, Roeckel N, Takazawa K, Mailleux P, Vassart G, Mattei MG (October 1992). "Localization of the genes for human inositol 1,4,5-trisphosphate 3-kinase A (ITPKA) and B (ITPKB) to chromosome regions 15q14-q21 and 1q41-q43, respectively, by in situ hybridization". Genomics. 14 (2): 546–7. doi:10.1016/S0888-7543(05)80265-4. PMID1330886.
↑Yamada M, Kakita A, Mizuguchi M, Rhee SG, Kim SU, Ikuta F (March 1993). "Specific expression of inositol 1,4,5-trisphosphate 3-kinase in dendritic spines". Brain Research. 606 (2): 335–40. PMID8387863.
↑Schell MJ, Erneux C, Irvine RF (October 2001). "Inositol 1,4,5-trisphosphate 3-kinase A associates with F-actin and dendritic spines via its N terminus". The Journal of Biological Chemistry. 276 (40): 37537–46. doi:10.1074/jbc.M104101200. PMID11468283.
↑Windhorst S, Minge D, Bähring R, Hüser S, Schob C, Blechner C, Lin HY, Mayr GW, Kindler S (March 2012). "Inositol-1,4,5-trisphosphate 3-kinase A regulates dendritic morphology and shapes synaptic Ca2+ transients". Cellular Signalling. 24 (3): 750–7. doi:10.1016/j.cellsig.2011.11.010. PMID22120525.
↑Melak M, Plessner M, Grosse R (February 2017). "Actin visualization at a glance". Journal of Cell Science. 130 (3): 525–530. doi:10.1242/jcs.189068. PMID28082420.
Takazawa K, Perret J, Dumont JE, Erneux C (January 1991). "Molecular cloning and expression of a human brain inositol 1,4,5-trisphosphate 3-kinase". Biochemical and Biophysical Research Communications. 174 (2): 529–35. doi:10.1016/0006-291X(91)91449-M. PMID1847047.
Lin AN, Barnes S, Wallace RW (August 1990). "Phosphorylation by protein kinase C inactivates an inositol 1,4,5-trisphosphate 3-kinase purified from human platelets". Biochemical and Biophysical Research Communications. 170 (3): 1371–6. doi:10.1016/0006-291X(90)90546-Y. PMID2167676.
Woodring PJ, Garrison JC (November 1997). "Expression, purification, and regulation of two isoforms of the inositol 1,4,5-trisphosphate 3-kinase". The Journal of Biological Chemistry. 272 (48): 30447–54. doi:10.1074/jbc.272.48.30447. PMID9374536.
Schell MJ, Erneux C, Irvine RF (October 2001). "Inositol 1,4,5-trisphosphate 3-kinase A associates with F-actin and dendritic spines via its N terminus". The Journal of Biological Chemistry. 276 (40): 37537–46. doi:10.1074/jbc.M104101200. PMID11468283.
González B, Schell MJ, Letcher AJ, Veprintsev DB, Irvine RF, Williams RL (September 2004). "Structure of a human inositol 1,4,5-trisphosphate 3-kinase: substrate binding reveals why it is not a phosphoinositide 3-kinase". Molecular Cell. 15 (5): 689–701. doi:10.1016/j.molcel.2004.08.004. PMID15350214.
Kato H, Uzawa K, Onda T, Kato Y, Saito K, Nakashima D, Ogawara K, Bukawa H, Yokoe H, Tanzawa H (April 2006). "Down-regulation of 1D-myo-inositol 1,4,5-trisphosphate 3-kinase A protein expression in oral squamous cell carcinoma". International Journal of Oncology. 28 (4): 873–81. doi:10.3892/ijo.28.4.873. PMID16525636.