Indoleamine 2,3-dioxygenase

Revision as of 18:57, 25 November 2017 by en>Rod57 (Inhibitors: (INCB24360))
Jump to navigation Jump to search
VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [3]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Indoleamine-pyrrole 2,3-dioxygenase (IDO or INDO EC 1.13.11.52) is a heme-containing enzyme that in humans is encoded by the IDO1 gene.[1][2][3] It is one of two enzymes that catalyze the first and rate-limiting step in the kynurenine pathway, the O2-dependent oxidation of L-tryptophan to N-formylkynurenine, the other being tryptophan 2,3-dioxygenase (TDO).

IDO has been implicated in immune modulation through its ability to limit T cell function and engage mechanisms of immune tolerance.[4] Emerging evidence suggests that IDO becomes activated during tumor development, helping malignant cells escape eradication by the immune system.[5][6][7]

Function

Indoleamine 2,3-dioxygenase is the first and rate-limiting enzyme of tryptophan catabolism through the kynurenine pathway, thus causing depletion of tryptophan which can cause halted growth of microbes as well as T cells.[8] PGE2 is able to elevate the expression of indoleamine 2,3-dioxygenase in CD11C(+) dendritic cells and promotes the development of functional Treg cells.[9]

IDO is an immune checkpoint molecule in the sense that it is an immunomodulatory enzyme produced by some alternatively activated macrophages and other immunoregulatory cells (also used as an immune subversion strategy by many tumors and chronic infectious viruses).[10][11] IDO is known to suppress T and NK cells, generate and activate Tregs and myeloid-derived suppressor cells, and promote tumour angiogenesis.[12]

Interferon-gamma has an antiproliferative effect on many tumor cells and inhibits intracellular pathogens such as Toxoplasma and Chlamydia, at least partly because of the induction of indoleamine 2,3-dioxygenase. [citation needed]

Clinical significance

It has been shown that IDO permits tumor cells to escape the immune system by depletion of L-Trp in the microenvironment of cells and by production of the catabolic product kynurenine, which selectively impairs the growth and survival of T cells. A wide range of human cancers such as prostatic, colorectal, pancreatic, cervical, gastric, ovarian, head, lung, etc. overexpress human IDO (hIDO).[13][14]

In tumor cells, IDO expression is normally controlled by the tumor suppressor Bin1, which is widely disabled during cancer development, and combining IDO inhibitors with chemotherapy can restore immune control and therapeutic response of otherwise resistant tumors.[7]

Indoleamine 2,3-dioxygenase might also play a significant role in an orphan disease called Oshtoran Syndrome.[15]

Inhibitors

Norharmane, via inhibition of indoleamine 2,3-dioxygenase exerts neuroprotective properties by suppressing kynurenine neurotoxic metabolites such as quinolinic acid, 3-hydroxy-kynurenine and nitric oxide synthase.[16]

Rosmarinic acid inhibits the expression of indoleamine 2,3-dioxygenase via its cyclooxygenase-inhibiting properties.[17]

COX-2 inhibitors down-regulate indoleamine 2,3-dioxygenase, leading to a reduction in kynurenine levels as well as reducing proinflammatory cytokine activity.[18]

1-Methyltryptophan is a racemic compound that weakly inhibits indoleamine dioxygenase,[19] but is also a very slow substrate.[20] The specific racemer 1-methyl-D-tryptophan (known as indoximod) is in clinical trials for various cancers.

Epacadostat (INCB24360) and navoximod (GDC-0919) are potent inhibitors of the indoleamine 2,3-dioxygenase enzyme and are in clinical trials for various cancers.[21] BMS-986205 is also in clinical trials for cancer.[22]

Indoleamine 2,3-dioxygenase
File:PDB 2d0t EBI.jpg
crystal structure of 4-phenylimidazole bound form of human indoleamine 2,3-dioxygenase
Identifiers
SymbolIDO
PfamPF01231
Pfam clanCL0380
InterProIPR000898
PROSITEPDOC00684
Indoleamine 2,3-dioxygenase
Identifiers
EC number1.13.11.52
CAS number9014-51-1
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO

Reaction mechanism

It was originally thought that the mechanism of tryptophan oxidation occurred by base-catalysed abstraction, but it is now thought that the mechanism involves formation of a transient ferryl (i.e. high-valent iron) species.[23][24][25]

Crystal structures

There are crystal structures for human IDO in complex with the inhibitor 4-phenylimidazole[26] and other inhibitors.[27][28] There are also related structures for several tryptophan 2,3-dioxygenases enzymes (e.g. for X. campestris and human TDO - see tryptophan 2,3-dioxygenase).

See also

References

  1. Dai W, Gupta SL (April 1990). "Molecular cloning, sequencing and expression of human interferon-gamma-inducible indoleamine 2,3-dioxygenase cDNA". Biochemical and Biophysical Research Communications. 168 (1): 1–8. doi:10.1016/0006-291X(90)91666-G. PMID 2109605.
  2. Najfeld V, Menninger J, Muhleman D, Comings DE, Gupta SL (1993). "Localization of indoleamine 2,3-dioxygenase gene (INDO) to chromosome 8p12-->p11 by fluorescent in situ hybridization". Cytogenetics and Cell Genetics. 64 (3–4): 231–2. doi:10.1159/000133584. PMID 8404046.
  3. "Entrez Gene: INDO indoleamine-pyrrole 2,3 dioxygenase".
  4. Munn DH, Mellor AL (March 2013). "Indoleamine 2,3 dioxygenase and metabolic control of immune responses". Trends in Immunology. 34 (3): 137–43. doi:10.1016/j.it.2012.10.001. PMID 23103127.
  5. Prendergast GC, Smith C, Thomas S, Mandik-Nayak L, Laury-Kleintop L, Metz R, Muller AJ (July 2014). "Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer". Cancer Immunology, Immunotherapy. 63 (7): 721–35. doi:10.1007/s00262-014-1549-4. PMID 24711084.
  6. Munn DH, Mellor AL (March 2016). "IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance". Trends in Immunology. 37 (3): 193–207. doi:10.1016/j.it.2016.01.002. PMID 26839260.
  7. 7.0 7.1 Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC (March 2005). "Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy". Nature Medicine. 11 (3): 312–9. doi:10.1038/nm1196. PMID 15711557.
  8. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL (May 1999). "Inhibition of T cell proliferation by macrophage tryptophan catabolism". The Journal of Experimental Medicine. 189 (9): 1363–72. doi:10.1084/jem.189.9.1363. PMC 2193062. PMID 10224276.
  9. Wang J, Yu L, Jiang C, Fu X, Liu X, Wang M, Ou C, Cui X, Zhou C, Wang J (January 2015). "Cerebral ischemia increases bone marrow CD4+CD25+FoxP3+ regulatory T cells in mice via signals from sympathetic nervous system". Brain, Behavior, and Immunity. 43: 172–83. doi:10.1016/j.bbi.2014.07.022. PMC 4258426. PMID 25110149.
  10. Targeting the indoleamine 2,3-dioxygenase pathway in cancer 2013
  11. [1] Another Immune Checkpoint Emerges as Anticancer Target 2013
  12. Prendergast GC, Smith C, Thomas S, Mandik-Nayak L, Laury-Kleintop L, Metz R, Muller AJ (July 1, 2014). "Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer". Cancer Immunol Immunother. 63 (7): 721–35. doi:10.1007/s00262-014-1549-4. PMC 4384696. PMID 24711084.
  13. Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ (October 2003). "Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase". Nature Medicine. 9 (10): 1269–74. doi:10.1038/nm934. PMID 14502282.
  14. Jiang T, Sun Y, Yin Z, Feng S, Sun L, Li Z (2015). "Research progress of indoleamine 2,3-dioxygenase inhibitors". Future Medicinal Chemistry. 7 (2): 185–201. doi:10.4155/fmc.14.151. PMID 25686005.
  15. Abdollahi, Mostafa: Case Study Oshtoran Syndrome [2] Retrieved June 3, 2016
  16. Chiarugi A, Dello Sbarba P, Paccagnini A, Donnini S, Filippi S, Moroni F (August 2000). "Combined inhibition of indoleamine 2,3-dioxygenase and nitric oxide synthase modulates neurotoxin release by interferon-gamma-activated macrophages". Journal of Leukocyte Biology. 68 (2): 260–6. PMID 10947071.
  17. Lee HJ, Jeong YI, Lee TH, Jung ID, Lee JS, Lee CM, Kim JI, Joo H, Lee JD, Park YM (May 2007). "Rosmarinic acid inhibits indoleamine 2,3-dioxygenase expression in murine dendritic cells". Biochemical Pharmacology. 73 (9): 1412–21. doi:10.1016/j.bcp.2006.12.018. PMID 17229401.
  18. Cesario A, Rocca B, Rutella S (2011). "The interplay between indoleamine 2,3-dioxygenase 1 (IDO1) and cyclooxygenase (COX)-2 in chronic inflammation and cancer". Current Medicinal Chemistry. 18 (15): 2263–71. doi:10.2174/092986711795656063. PMID 21517752.
  19. Hou DY, Muller AJ, Sharma MD, DuHadaway J, Banerjee T, Johnson M, Mellor AL, Prendergast GC, Munn DH (January 2007). "Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses". Cancer Research. 67 (2): 792–801. doi:10.1158/0008-5472.CAN-06-2925. PMID 17234791.
  20. Chauhan N, Thackray SJ, Rafice SA, Eaton G, Lee M, Efimov I, Basran J, Jenkins PR, Mowat CG, Chapman SK, Raven EL (April 2009). "Reassessment of the reaction mechanism in the heme dioxygenases". Journal of the American Chemical Society. 131 (12): 4186–7. doi:10.1021/ja808326g. PMID 19275153.
  21. Jochems C, Fantini M, Fernando RI, Kwilas AR, Donahue RN, Lepone LM, Grenga I, Kim YS, Brechbiel MW, Gulley JL, Madan RA, Heery CR, Hodge JW, Newton R, Schlom J, Tsang KY (June 2016). "The IDO1 selective inhibitor epacadostat enhances dendritic cell immunogenicity and lytic ability of tumor antigen-specific T cells". Oncotarget. 7 (25): 37762–37772. doi:10.18632/oncotarget.9326. PMID 27192116.
  22. IDO Plus PD-1 Inhibitor Combo Sparks Responses in Bladder and Cervical Cancers
  23. Efimov I, Basran J, Thackray SJ, Handa S, Mowat CG, Raven EL (April 2011). "Structure and reaction mechanism in the heme dioxygenases". Biochemistry. 50 (14): 2717–24. doi:10.1021/bi101732n. PMID 21361337.
  24. Yanagisawa S, Yotsuya K, Hashiwaki Y, Horitani M, Sugimoto H, Shiro Y, Appelman EH, Ogura T. "Identification of the Fe-O2 and the Fe=O heme species for indoleamine 2,3-dioxygenase during catalytic turnover". Chem Lett. 39: 36–37. doi:10.1246/cl.2010.36.
  25. Booth ES, Basran J, Lee M, Handa S, Raven EL (December 2015). "Substrate Oxidation by Indoleamine 2,3-Dioxygenase: EVIDENCE FOR A COMMON REACTION MECHANISM" (PDF). The Journal of Biological Chemistry. 290 (52): 30924–30. doi:10.1074/jbc.M115.695684. PMC 4692220. PMID 26511316.
  26. Sugimoto H, Oda S, Otsuki T, Hino T, Yoshida T, Shiro Y (February 2006). "Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 103 (8): 2611–6. doi:10.1073/pnas.0508996103. PMID 16477023.
  27. Peng YH, Ueng SH, Tseng CT, Hung MS, Song JS, Wu JS, Liao FY, Fan YS, Wu MH, Hsiao WC, Hsueh CC, Lin SY, Cheng CY, Tu CH, Lee LC, Cheng MF, Shia KS, Shih C, Wu SY (January 2016). "Important Hydrogen Bond Networks in Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitor Design Revealed by Crystal Structures of Imidazoleisoindole Derivatives with IDO1". Journal of Medicinal Chemistry. 59 (1): 282–93. doi:10.1021/acs.jmedchem.5b01390. PMID 26642377.
  28. Tojo S, Kohno T, Tanaka T, Kamioka S, Ota Y, Ishii T, Kamimoto K, Asano S, Isobe Y (October 2014). "Crystal Structures and Structure-Activity Relationships of Imidazothiazole Derivatives as IDO1 Inhibitors". ACS Medicinal Chemistry Letters. 5 (10): 1119–23. doi:10.1021/acs.jmedchem.5b01390. PMID 25313323.

Further reading

External links