Complete loss of MFSD2A in human leads to a recessive lethal microcephaly syndrome consisting of enlarged lateral ventricles and underdevelopment of the cerebellum and brainstem. This is presumably due to loss of uptake of essential polyunsaturated fatty acids by the brain endothelial cells, which utilize MFSD2A as a transporter for these fats. Serum from patients showed elevated levels of essential polyunsaturated fatty acids, presumably due to the inability of vascular cells to uptake these lipids in the absence of protein function. Without the ability to uptake these fats into endothelial cells, there is breakdown of the blood-brain-barrier and loss of brain volume. This was demonstrated in a zebrafish model by intracardiac injection of dye, which was found to extravasate into the brain parenchyma following inactivating one of the paralogues of MSFD2A known as mfsd2aa.[8]
↑Perland, Emelie; Fredriksson, Robert (March 2017). "Classification Systems of Secondary Active Transporters". Trends in Pharmacological Sciences. 38 (3): 305–315. doi:10.1016/j.tips.2016.11.008. ISSN1873-3735. PMID27939446.
Yamada S, Ohira M, Horie H, Ando K, Takayasu H, Suzuki Y, Sugano S, Hirata T, Goto T, Matsunaga T, Hiyama E, Hayashi Y, Ando H, Suita S, Kaneko M, Sasaki F, Hashizume K, Ohnuma N, Nakagawara A (2004). "Expression profiling and differential screening between hepatoblastomas and the corresponding normal livers: identification of high expression of the PLK1 oncogene as a poor-prognostic indicator of hepatoblastomas". Oncogene. 23 (35): 5901–11. doi:10.1038/sj.onc.1207782. PMID15221005.