Patent foramen ovale echocardiography and ultrasound

Jump to navigation Jump to search

Patent Foramen Ovale Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Patent Foramen Ovale from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

PFO and Stroke

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Patent foramen ovale echocardiography and ultrasound On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Patent foramen ovale echocardiography and ultrasound

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Patent foramen ovale echocardiography and ultrasound

CDC on Patent foramen ovale echocardiography and ultrasound

Patent foramen ovale echocardiography and ultrasound in the news

Blogs on Patent foramen ovale echocardiography and ultrasound

Directions to Hospitals Treating Patent foramen ovale

Risk calculators and risk factors for Patent foramen ovale echocardiography and ultrasound

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1];

Overview

Echocardiography/Ultrasound

When diagnosing patent foramen ovale, several echocardiographic techniques can be used, including transthoracic echocardiography (TTE), transesophageal echocardiography (TEE), and transcranial doppler ultrasonography. They all require the use of a contrast, commonly saline solution.[1]

Transesophageal Echocardiography

  • Transesophageal echocardiography is the gold standard for diagnosis. It has a superior image resolution and the ability to identify the origin of a right-to-left shunt. It is the study of choice in patients suspected to have a paradoxical embolus.[2][3][1]
  • The process of detecting a right-to-left shunt across a PFO involves the patient performing the valsalva maneuver while injected with a saline contrast medium. During the strain phase of the maneuver, the saline medium is injected into a peripheral vein and the atrial septum is visualized during the release phase of the maneuver.[3]
  • Findings on an echocardiography suggestive of/diagnostic of a right-to-left shunt include:[3][4]
  • Presence of bubbles across the inter-atrial septum into the left atrium: A diagnosis is made with the appearance of at least three micro-bubbles within three cardiac cycles after the complete opacification of the right atrium.
  • Although tranesopheageal echocardiography is preferred, sedating the patient may cause difficulty in performing the valsalva maneuver.[3]

Transthoracic Echocardiography

  • A standard TTE should precede a contrast-enhanced TEE in a workup for cryptogenic shock. The presence of a patent foramen ovale should be further assessed with a contrast-enhanced TEE if the result reveals a structurally normal heart and ant intra-cardiac sources of emboli.[1]

Transcranial Doppler

  • It is a reliable and non-invasive test useful during cryptogenic stroke work-up.[1]
  • It can be used as an alternative to contrast enhanced transesophageal echocardiography in recognizing a right-to-left shunt because of its high sensitivity and specificity.[5]
  • From a meta-analysis, transcranial doppler had a mean sensitivity and specificity of 97% and 93%, respectively.[5]

References

  1. 1.0 1.1 1.2 1.3 Falanga G, Carerj S, Oreto G, Khandheria BK, Zito C (2014). "How to Understand Patent Foramen Ovale Clinical Significance: Part I." J Cardiovasc Echogr. 24 (4): 114–121. doi:10.4103/2211-4122.147202. PMC 5353567. PMID 28465918.
  2. Pearson AC, Labovitz AJ, Tatineni S, Gomez CR (1991). "Superiority of transesophageal echocardiography in detecting cardiac source of embolism in patients with cerebral ischemia of uncertain etiology". J Am Coll Cardiol. 17 (1): 66–72. doi:10.1016/0735-1097(91)90705-e. PMID 1987242.
  3. 3.0 3.1 3.2 3.3 Pinto FJ (2005). "When and how to diagnose patent foramen ovale". Heart. 91 (4): 438–40. doi:10.1136/hrt.2004.052233. PMC 1768819. PMID 15772190.
  4. Mas, Jean-Louis; Arquizan, Caroline; Lamy, Catherine; Zuber, Mathieu; Cabanes, Laure; Derumeaux, Geneviève; Coste, Joël (2001). "Recurrent Cerebrovascular Events Associated with Patent Foramen Ovale, Atrial Septal Aneurysm, or Both". New England Journal of Medicine. 345 (24): 1740–1746. doi:10.1056/NEJMoa011503. ISSN 0028-4793.
  5. 5.0 5.1 Mojadidi MK, Roberts SC, Winoker JS, Romero J, Goodman-Meza D, Gevorgyan R; et al. (2014). "Accuracy of transcranial Doppler for the diagnosis of intracardiac right-to-left shunt: a bivariate meta-analysis of prospective studies". JACC Cardiovasc Imaging. 7 (3): 236–50. doi:10.1016/j.jcmg.2013.12.011. PMID 24560213.

Template:WH Template:WS