Intraparenchymal hemorrhage

Jump to navigation Jump to search

Template:Intraparenchymal hemorrhage

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:

Synonyms and keywords:

Overview

Historical Perspective

[Disease name] was first discovered by [name of scientist], a [nationality + occupation], in [year]/during/following [event].

The association between [important risk factor/cause] and [disease name] was made in/during [year/event].

In [year], [scientist] was the first to discover the association between [risk factor] and the development of [disease name].

In [year], [gene] mutations were first implicated in the pathogenesis of [disease name].

There have been several outbreaks of [disease name], including -----.

In [year], [diagnostic test/therapy] was developed by [scientist] to treat/diagnose [disease name].

Classification

[Intraparenchymal hemorrhage] may be classified according to etiology into primary and secondary intraparenchymal hemorrhage. Intraparenchymal hemorrhage occurring as a consequence of hypertension or cerebral amyloid angiopathy is termed as primary intraparenchymal hemorrhage. If the etiology is other than hypertension or cerebral amyloid angiopathy then intraparenchymal hemorrhage is termed as secondary intraparenchymal hemorrhage. [1]


Pathophysiology

The exact pathogenesis of [disease name] is not fully understood.

OR

It is thought that [intraparenchymal hemorrhages] are caused by small cerebral bleeds that occur as a consequence of pseudoaneurysm formation.[hypothesis 1], [hypothesis 2], or [hypothesis 3].

OR

[Pathogen name] is usually transmitted via the [transmission route] route to the human host.

OR

Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.

OR


[Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].

OR

The progression to [disease name] usually involves the [molecular pathway].

OR

The pathophysiology of [disease/malignancy] depends on the histological subtype.

Causes

The most common cause of [spontaneous intra parenchymal hemorrhage] is [hypertensive angiopathy]. In older adults, most common cause of lobar intra-parenchymal hemorrhage is cerebral amyloid angiopathy. For intra-parenchymal hemorrhages in children vascular malformations are the most common cause.[2][3] Less common causes of [spontaneous intra-parenchymal hemorrhage] include [vasculitis], [CNS infection], [rupture of dural AV fistula], septic embolism, mycotic aneurysm rupture, tumors, Av malformation rupture, cerebral hyperperfusion syndrome, dural sinus thrombosis, moyamoya, reversible cerebral vasoconstriction syndromes, transformation of ischemic stroke into hemorrhagic, bleeding disorders, systemic illnesses like cirrhosis of liver and thrombocytopenia, medications for anticoagulation, drugs like amphetamines and cocaine. [4][5][6][7][8][9]

click here.

Differentiating intraparenchymal hemorrhage from other Diseases

[Disease name] must be differentiated from other diseases that cause [clinical feature 1], [clinical feature 2], and [clinical feature 3], such as [differential dx1], [differential dx2], and [differential dx3].

OR

[Disease name] must be differentiated from [[differential dx1], [differential dx2], and [differential dx3].

Epidemiology and Demographics

The incidence of [intra-parenchymal hemorrhage] is approximately [24.6] per 100,000 person years. Asian and older populations have substantially higher incidence. [10]

OR

In [year], the incidence/prevalence of [disease name] was estimated to be [number range] cases per 100,000 individuals worldwide.

OR

In [year], the incidence of [disease name] is approximately [number range] per 100,000 individuals with a case-fatality rate of [number range]%.


Patients of all age groups may develop [disease name].

OR

The incidence of [disease name] increases with age; the median age at diagnosis is [#] years.

OR

[Disease name] commonly affects individuals younger than/older than [number of years] years of age.

OR

[Chronic disease name] is usually first diagnosed among [age group].

OR

[Acute disease name] commonly affects [age group].


There is no racial predilection to [disease name].

OR

[Disease name] usually affects individuals of the [race 1] race. [Race 2] individuals are less likely to develop [disease name].


[Disease name] affects men and women equally.

OR

[Gender 1] are more commonly affected by [disease name] than [gender 2]. The [gender 1] to [gender 2] ratio is approximately [number > 1] to 1.


The majority of [disease name] cases are reported in [geographical region].

OR

[Disease name] is a common/rare disease that tends to affect [patient population 1] and [patient population 2].

Risk Factors

The most potent risk factor in the development of [intraparenchymal hemorrhage] is [hypertension]. [11] Other risk factors include presence of amyloid angiopathy, old age, use of anti-coagulants, [alcohol intake], [smoking], [low LDL and total cholesterol], increased HDL cholesterol, black race, presence of apolipoprotein E with E2 and E4 alleles. [12][13][14][15][16]


Screening

There is insufficient evidence to recommend routine screening for [disease/malignancy].

OR

According to the [guideline name], screening for [disease name] is not recommended.

OR

According to the [guideline name], screening for [disease name] by [test 1] is recommended every [duration] among patients with [condition 1], [condition 2], and [condition 3].

Natural History, Complications, and Prognosis

If left untreated, [#]% of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].

OR

Common complications of [disease name] include [complication 1], [complication 2], and [complication 3].

OR

Prognosis of intraparenchymal hemorrhage is generally poor. It has the highest mortality rate among all the causes of stroke with the 1-year and 10-year survival rates of 40% and 24% respectively. [17][13][18]

Diagnosis

Diagnostic Study of Choice

The diagnosis of [disease name] is made when at least [number] of the following [number] diagnostic criteria are met: [criterion 1], [criterion 2], [criterion 3], and [criterion 4].

OR

The diagnosis of [disease name] is based on the [criteria name] criteria, which include [criterion 1], [criterion 2], and [criterion 3].

OR

The diagnosis of [disease name] is based on the [definition name] definition, which includes [criterion 1], [criterion 2], and [criterion 3].

OR

There are no established criteria for the diagnosis of [disease name].

History and Symptoms

The majority of patients with [disease name] are asymptomatic.

OR

The hallmark of [disease name] is [finding]. A positive history of [finding 1] and [finding 2] is suggestive of [disease name]. The most common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3]. Common symptoms of [disease] include [symptom 1], [symptom 2], and [symptom 3]. Less common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3].

Physical Examination

Patients with [disease name] usually appear [general appearance]. Physical examination of patients with [disease name] is usually remarkable for [finding 1], [finding 2], and [finding 3].

OR

Common physical examination findings of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

The presence of [finding(s)] on physical examination is diagnostic of [disease name].

OR

The presence of [finding(s)] on physical examination is highly suggestive of [disease name].

Laboratory Findings

An elevated/reduced concentration of serum/blood/urinary/CSF/other [lab test] is diagnostic of [disease name].

OR

Laboratory findings consistent with the diagnosis of [disease name] include [abnormal test 1], [abnormal test 2], and [abnormal test 3].

OR

[Test] is usually normal among patients with [disease name].

OR

Some patients with [disease name] may have elevated/reduced concentration of [test], which is usually suggestive of [progression/complication].

OR

There are no diagnostic laboratory findings associated with [disease name].

Electrocardiogram

There are no ECG findings associated with [disease name].

OR

An ECG may be helpful in the diagnosis of [disease name]. Findings on an ECG suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

X-ray

There are no x-ray findings associated with [disease name].

OR

An x-ray may be helpful in the diagnosis of [disease name]. Findings on an x-ray suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no x-ray findings associated with [disease name]. However, an x-ray may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

Echocardiography or Ultrasound

There are no echocardiography/ultrasound findings associated with [disease name].

OR

Echocardiography/ultrasound may be helpful in the diagnosis of [disease name]. Findings on an echocardiography/ultrasound suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no echocardiography/ultrasound findings associated with [disease name]. However, an echocardiography/ultrasound may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

CT scan

There are no CT scan findings associated with [disease name].

OR

[Location] CT scan may be helpful in the diagnosis of [disease name]. Findings on CT scan suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no CT scan findings associated with [disease name]. However, a CT scan may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

MRI

There are no MRI findings associated with [disease name].

OR

[Location] MRI may be helpful in the diagnosis of [disease name]. Findings on MRI suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no MRI findings associated with [disease name]. However, a MRI may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

Other Imaging Findings

There are no other imaging findings associated with [disease name].

OR

[Imaging modality] may be helpful in the diagnosis of [disease name]. Findings on an [imaging modality] suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

Other Diagnostic Studies

There are no other diagnostic studies associated with [disease name].

OR

[Diagnostic study] may be helpful in the diagnosis of [disease name]. Findings suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

Other diagnostic studies for [disease name] include [diagnostic study 1], which demonstrates [finding 1], [finding 2], and [finding 3], and [diagnostic study 2], which demonstrates [finding 1], [finding 2], and [finding 3].

Treatment

Medical Therapy

There is no treatment for [disease name]; the mainstay of therapy is supportive care.

OR

Supportive therapy for [disease name] includes [therapy 1], [therapy 2], and [therapy 3].

OR

The majority of cases of [disease name] are self-limited and require only supportive care.

OR

[Disease name] is a medical emergency and requires prompt treatment.

OR

The mainstay of treatment for [disease name] is [therapy].

OR

The optimal therapy for [malignancy name] depends on the stage at diagnosis.

OR

[Therapy] is recommended among all patients who develop [disease name].

OR

Pharmacologic medical therapy is recommended among patients with [disease subclass 1], [disease subclass 2], and [disease subclass 3].

OR

Pharmacologic medical therapies for [disease name] include (either) [therapy 1], [therapy 2], and/or [therapy 3].

OR

Empiric therapy for [disease name] depends on [disease factor 1] and [disease factor 2].

OR

Patients with [disease subclass 1] are treated with [therapy 1], whereas patients with [disease subclass 2] are treated with [therapy 2].

Surgery

Surgical intervention is not recommended for the management of [disease name].

OR

Surgery is not the first-line treatment option for patients with [disease name]. Surgery is usually reserved for patients with either [indication 1], [indication 2], and [indication 3]

OR

The mainstay of treatment for [disease name] is medical therapy. Surgery is usually reserved for patients with either [indication 1], [indication 2], and/or [indication 3].

OR

The feasibility of surgery depends on the stage of [malignancy] at diagnosis.

OR

Surgery is the mainstay of treatment for [disease or malignancy].

Primary Prevention

There are no established measures for the primary prevention of [disease name].

OR

There are no available vaccines against [disease name].

OR

Effective measures for the primary prevention of [disease name] include [measure1], [measure2], and [measure3].

OR

[Vaccine name] vaccine is recommended for [patient population] to prevent [disease name]. Other primary prevention strategies include [strategy 1], [strategy 2], and [strategy 3].

Secondary Prevention

There are no established measures for the secondary prevention of [disease name].

OR

Effective measures for the secondary prevention of [disease name] include [strategy 1], [strategy 2], and [strategy 3].

References

  1. Gross BA, Jankowitz BT, Friedlander RM (2019). "Cerebral Intraparenchymal Hemorrhage: A Review". JAMA. 321 (13): 1295–1303. doi:10.1001/jama.2019.2413. PMID 30938800.
  2. Cordonnier C, Demchuk A, Ziai W, Anderson CS (2018). "Intracerebral haemorrhage: current approaches to acute management". Lancet. 392 (10154): 1257–1268. doi:10.1016/S0140-6736(18)31878-6. PMID 30319113.
  3. Beslow LA, Licht DJ, Smith SE, Storm PB, Heuer GG, Zimmerman RA; et al. (2010). "Predictors of outcome in childhood intracerebral hemorrhage: a prospective consecutive cohort study". Stroke. 41 (2): 313–8. doi:10.1161/STROKEAHA.109.568071. PMC 2821039. PMID 20019325.
  4. Cordonnier C, Demchuk A, Ziai W, Anderson CS (2018). "Intracerebral haemorrhage: current approaches to acute management". Lancet. 392 (10154): 1257–1268. doi:10.1016/S0140-6736(18)31878-6. PMID 30319113.
  5. Meretoja A, Strbian D, Putaala J, Curtze S, Haapaniemi E, Mustanoja S; et al. (2012). "SMASH-U: a proposal for etiologic classification of intracerebral hemorrhage". Stroke. 43 (10): 2592–7. doi:10.1161/STROKEAHA.112.661603. PMID 22858729.
  6. Delgado Almandoz JE, Schaefer PW, Goldstein JN, Rosand J, Lev MH, González RG; et al. (2010). "Practical scoring system for the identification of patients with intracerebral hemorrhage at highest risk of harboring an underlying vascular etiology: the Secondary Intracerebral Hemorrhage Score". AJNR Am J Neuroradiol. 31 (9): 1653–60. doi:10.3174/ajnr.A2156. PMC 3682824. PMID 20581068.
  7. Gross BA, Jankowitz BT, Friedlander RM (2019). "Cerebral Intraparenchymal Hemorrhage: A Review". JAMA. 321 (13): 1295–1303. doi:10.1001/jama.2019.2413. PMID 30938800.
  8. Swor DE, Maas MB, Walia SS, Bissig DP, Liotta EM, Naidech AM; et al. (2019). "Clinical characteristics and outcomes of methamphetamine-associated intracerebral hemorrhage". Neurology. 93 (1): e1–e7. doi:10.1212/WNL.0000000000007666. PMC 6659002 Check |pmc= value (help). PMID 31142634.
  9. Martin-Schild S, Albright KC, Hallevi H, Barreto AD, Philip M, Misra V; et al. (2010). "Intracerebral hemorrhage in cocaine users". Stroke. 41 (4): 680–4. doi:10.1161/STROKEAHA.109.573147. PMC 3412877. PMID 20185779.
  10. van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ (2010). "Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis". Lancet Neurol. 9 (2): 167–76. doi:10.1016/S1474-4422(09)70340-0. PMID 20056489.
  11. O'Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P; et al. (2010). "Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study". Lancet. 376 (9735): 112–23. doi:10.1016/S0140-6736(10)60834-3. PMID 20561675.
  12. O'Donnell HC, Rosand J, Knudsen KA, Furie KL, Segal AZ, Chiu RI; et al. (2000). "Apolipoprotein E genotype and the risk of recurrent lobar intracerebral hemorrhage". N Engl J Med. 342 (4): 240–5. doi:10.1056/NEJM200001273420403. PMID 10648765.
  13. 13.0 13.1 Sacco S, Marini C, Toni D, Olivieri L, Carolei A (2009). "Incidence and 10-year survival of intracerebral hemorrhage in a population-based registry". Stroke. 40 (2): 394–9. doi:10.1161/STROKEAHA.108.523209. PMID 19038914.
  14. Costa P, Grassi M, Iacoviello L, Zedde M, Marcheselli S, Silvestrelli G; et al. (2018). "Alcohol intake and the risk of intracerebral hemorrhage in the elderly: The MUCH-Italy". Neurology. 91 (3): e227–e235. doi:10.1212/WNL.0000000000005814. PMID 29898970.
  15. Suh I, Jee SH, Kim HC, Nam CM, Kim IS, Appel LJ (2001). "Low serum cholesterol and haemorrhagic stroke in men: Korea Medical Insurance Corporation Study". Lancet. 357 (9260): 922–5. doi:10.1016/S0140-6736(00)04213-6. PMID 11289349.
  16. Sturgeon JD, Folsom AR, Longstreth WT, Shahar E, Rosamond WD, Cushman M (2007). "Risk factors for intracerebral hemorrhage in a pooled prospective study". Stroke. 38 (10): 2718–25. doi:10.1161/STROKEAHA.107.487090. PMID 17761915.
  17. van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ (2010). "Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis". Lancet Neurol. 9 (2): 167–76. doi:10.1016/S1474-4422(09)70340-0. PMID 20056489.
  18. Dennis MS, Burn JP, Sandercock PA, Bamford JM, Wade DT, Warlow CP (1993). "Long-term survival after first-ever stroke: the Oxfordshire Community Stroke Project". Stroke. 24 (6): 796–800. doi:10.1161/01.str.24.6.796. PMID 8506550.


Template:WikiDoc Sources