COVID-19 diagnostic study of choice

Jump to navigation Jump to search

For COVID-19 frequently asked inpatient questions, click here
For COVID-19 frequently asked outpatient questions, click here

COVID-19 Microchapters

Home

Long COVID

Frequently Asked Outpatient Questions

Frequently Asked Inpatient Questions

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating COVID-19 from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Vaccines

Secondary Prevention

Future or Investigational Therapies

Ongoing Clinical Trials

Case Studies

Case #1

COVID-19 diagnostic study of choice On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of COVID-19 diagnostic study of choice

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on COVID-19 diagnostic study of choice

CDC on COVID-19 diagnostic study of choice

COVID-19 diagnostic study of choice in the news

Blogs on COVID-19 diagnostic study of choice

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for COVID-19 diagnostic study of choice

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] ; Associate Editor(s)-in-Chief: Sabawoon Mirwais, M.B.B.S, M.D.[2]

Overview

The diagnostic criteria for suspected and confirmed cases of coronavirus disease 2019 (COVID-19) are tabulated in the section below.

Diagnostic Study of Choice

Study of Choice

  • The Nucleic acid amplification test by the reverse transcriptase-polymerase chain reaction (RT-PCR) is the gold standard test for detecting coronavirus illness. These tests are highly specific for detecting coronavirus illness.[1]

Diagnostic Results

  • The NAAT detects viral gene sequence specific for coronavirus. The genes detected by NAAT include nucleocapsid(N), envelope(E), spike(S), and RNA dependent RNA polymerase (RdRP) in the open reading frame. [2]
  • The turnaround time for these tests is variable depending upon the specific testing kit and laboratory performing it.[3]
  • The diagnosis of coronavirus illness requires detection of at least two genes specific for SAR Cov-2 by RT-PCR. In the United States, the Center for disease control and prevention recommends testing for two nucleocapsid proteins N1 and N2.[4]
  • World Health Organization recommends two-step gene testing by NAAT for diagnosis of coronavirus illness. The first step is screening for coronavirus illness with Envelope(E) gene assay followed by a confirmatory test with RNA dependent RNA polymerase (RdRP) gene assay.[5]
  • The RdRp/Hel gene assay has the highest sensitivity and specificity for the diagnosis of coronavirus illness in comparison with spike and nucleocapsid genes. It has the lowest limit of detection in vitro.[6]

Diagnostic Criteria

The diagnostic criteria for suspected and confirmed cases of coronavirus disease 2019 (COVID-19) is tabulated below:[7][8][9][10][11][12]

Case Diagnostic Criteria
Suspected Case Anyone with a history of epidemiology and any two of the clinical manifestations or anyone without epidemiological history and three of the clinical manifestations is considered to be a suspected case:

1) Epidemiological history:

  • Within 14 days before the disease onset, there is a travel history or living history in Wuhan or other areas with local cases
  • Within 14 days before the disease onset, there is contact with patients who had a fever or respiratory symptoms from Wuhan or other areas with local cases
  • Clustering of patients or contact with patients infected with the SARS-CoV-2


2) Clinical manifestations:

  • Fever and/or respiratory symptoms
  • With the above-mentioned imaging characteristics of pneumonia
  • The total number of leukocytes in the early stage of the disease is normal or decreased, or the lymphocyte count is decreased
Confirmed Case Any suspected case with one of the following pathogenic features is reclassified as a confirmed case:

Ongoing diagnostic Trials

  • A researcher at Israel’s Ben-Gurion University of the Negev (BGU) has developed a test that identifies those carrying the COVID-19 virus in less than a minute. And it is both affordable and works with greater than 90% accuracy to boot[13]

Antibody response

  • Most recovering from #COVID19 do not have high levels of neutralizing antibodies BUT antibodies to the receptor binding domain (RBD) of the spike protein with potent antiviral activity were found in all individuals tested & may be tx target[14]
  • 8 weeks after hospital discharge, 40% of asymptomatic patients have no antibodies, and 12.9% of those who were symptomatic had no #COVID19 antibodies[15]

References

  1. Nalla AK, Casto AM, Huang MW, Perchetti GA, Sampoleo R, Shrestha L; et al. (2020). "Comparative Performance of SARS-CoV-2 Detection Assays Using Seven Different Primer-Probe Sets and One Assay Kit". J Clin Microbiol. 58 (6). doi:10.1128/JCM.00557-20. PMC 7269385 Check |pmc= value (help). PMID 32269100 Check |pmid= value (help).
  2. Tang YW, Schmitz JE, Persing DH, Stratton CW (2020). "Laboratory Diagnosis of COVID-19: Current Issues and Challenges". J Clin Microbiol. 58 (6). doi:10.1128/JCM.00512-20. PMC 7269383 Check |pmc= value (help). PMID 32245835 Check |pmid= value (help).
  3. Lieberman JA, Pepper G, Naccache SN, Huang ML, Jerome KR, Greninger AL (2020). "Comparison of Commercially Available and Laboratory Developed Assays for in vitro Detection of SARS-CoV-2 in Clinical Laboratories". J Clin Microbiol. doi:10.1128/JCM.00821-20. PMID 32350048 Check |pmid= value (help).
  4. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H; et al. (2020). "First Case of 2019 Novel Coronavirus in the United States". N Engl J Med. 382 (10): 929–936. doi:10.1056/NEJMoa2001191. PMC 7092802 Check |pmc= value (help). PMID 32004427 Check |pmid= value (help).
  5. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK; et al. (2020). "Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR". Euro Surveill. 25 (3). doi:10.2807/1560-7917.ES.2020.25.3.2000045. PMC 6988269 Check |pmc= value (help). PMID 31992387.
  6. Chan JF, Yip CC, To KK, Tang TH, Wong SC, Leung KH; et al. (2020). "Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens". J Clin Microbiol. 58 (5). doi:10.1128/JCM.00310-20. PMC 7180250 Check |pmc= value (help). PMID 32132196 Check |pmid= value (help).
  7. Chen, Nanshan; Zhou, Min; Dong, Xuan; Qu, Jieming; Gong, Fengyun; Han, Yang; Qiu, Yang; Wang, Jingli; Liu, Ying; Wei, Yuan; Xia, Jia'an; Yu, Ting; Zhang, Xinxin; Zhang, Li (2020). "Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study". The Lancet. 395 (10223): 507–513. doi:10.1016/S0140-6736(20)30211-7. ISSN 0140-6736.
  8. "C.N.H. Commission Notice on prevention and control of pneumonia in children and pregnant women with new coronavirus infection China National Health Commission, Beijing (2020) (in Chinese)". line feed character in |title= at position 18 (help)
  9. "Technology, M.e.g.o.T.h.a.t.T.M.C.o.H.U.o.S.a. A rapid guideline for the diagnosis and treatment of pneumonia with new coronavirus infection (Third edition)".
  10. "Union Hospital T.M.C., Huazhong University of Science and Technology., Wuhan union hospital manage the 2019 new coronavirus infection strategies and instructions (in Chinese)". line feed character in |title= at position 15 (help)
  11. "[Diagnosis and clinical management of 2019 novel coronavirus infection: an operational recommendation of Peking Union Medical College Hospital (V2.0)]". Zhonghua Nei Ke Za Zhi (in Chinese). 59 (3): 186–188. February 2020. doi:10.3760/cma.j.issn.0578-1426.2020.03.003. PMID 32023681 Check |pmid= value (help).
  12. "Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected".
  13. https://www.bioworld.com/articles/435285-Israels-ben-Gurion-university-develops-one-minute-coronavirus-test.html. Missing or empty |title= (help)
  14. Robbiani, Davide F.; Gaebler, Christian; Muecksch, Frauke; Lorenzi, Julio C. C.; Wang, Zijun; Cho, Alice; Agudelo, Marianna; Barnes, Christopher O.; Gazumyan, Anna; Finkin, Shlomo; Hägglöf, Thomas; Oliveira, Thiago Y.; Viant, Charlotte; Hurley, Arlene; Hoffmann, Hans-Heinrich; Millard, Katrina G.; Kost, Rhonda G.; Cipolla, Melissa; Gordon, Kristie; Bianchini, Filippo; Chen, Spencer T.; Ramos, Victor; Patel, Roshni; Dizon, Juan; Shimeliovich, Irina; Mendoza, Pilar; Hartweger, Harald; Nogueira, Lilian; Pack, Maggi; Horowitz, Jill; Schmidt, Fabian; Weisblum, Yiska; Michailidis, Eleftherios; Ashbrook, Alison W.; Waltari, Eric; Pak, John E.; Huey-Tubman, Kathryn E.; Koranda, Nicholas; Hoffman, Pauline R.; West, Anthony P.; Rice, Charles M.; Hatziioannou, Theodora; Bjorkman, Pamela J.; Bieniasz, Paul D.; Caskey, Marina; Nussenzweig, Michel C. (2020). "Convergent antibody responses to SARS-CoV-2 in convalescent individuals". Nature. doi:10.1038/s41586-020-2456-9. ISSN 0028-0836.
  15. Long, Quan-Xin; Tang, Xiao-Jun; Shi, Qiu-Lin; Li, Qin; Deng, Hai-Jun; Yuan, Jun; Hu, Jie-Li; Xu, Wei; Zhang, Yong; Lv, Fa-Jin; Su, Kun; Zhang, Fan; Gong, Jiang; Wu, Bo; Liu, Xia-Mao; Li, Jin-Jing; Qiu, Jing-Fu; Chen, Juan; Huang, Ai-Long (2020). "Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections". Nature Medicine. doi:10.1038/s41591-020-0965-6. ISSN 1078-8956.