Sandbox: GDS
For COVID-19 frequently asked inpatient questions, click here
For COVID-19 frequently asked outpatient questions, click here
COVID-19 Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Sandbox: GDS On the Web |
American Roentgen Ray Society Images of Sandbox: GDS |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:
COVID-19 Infection in Transplant Patients
Risk of COVID-19 in renal transplant patients is higher because of immunosuppression, underlying chronic kidney disease, and other co morbidities such as diabetes and hypertension, which are presently perceived as noteworthy components impacting the results in patients with COVID-19.[1].It is realized that any transplant recipient presented to the infection would result in a high level of cases; however the risk of donor to recipient transmission is unknown. The chances of a donor to recipient infection might be affected by exposure of the donor, infectivity of the the donor during the incubation period and the degree of viremia as well as the viability of virus in specific organ system.In this manner, in spite of the conceivable negative outcomes, temporary interruption of kidney transplantation might be fundamental in regions where the rate of infection is high.[2]
Epidemiology and Demographics
- Epidemiological date indicates that the rate of severe complications of COVID-19 is almost 25%, and kidney is also one of the main organs affected in severe illness.[3]
- AKI is seen in 5-15% of the SARS-CoV and MERS-CoV infection, and the mortality rate is reported to be higher than in general population at 60-90% as per the literature. [4]
- .The risk is further increased in patients having chronic kidney disease(CKD), patients on chronic replacement therapies, and patients with kidney transplants.[4]
Age
- Renal transplant patients of all ages are at a higher risk of COVID-19 due to immunosuppression.
- In general population, COVID-19 associated AKI has higher incidence in elderly.[5]
Gender
- Men are more likely to be affected by COVID_19 than women.[6]
- Women dying from COVID-19 are generally elder than men(median age: 82 vs. 79 years for women vs. men, respectively).[6]
Race
- There is no racial predilection for COVID-19 infection in renal transplant patients.
Pathophysiology
- Acute Kidney Injury has been reported in patients with COVID-19 infection and presence of proteinuria, hematuria has also been reported. In a case observation, 4 out of 7 patients had AKI which may indicate that renal transplant patients are at higher risk AKI on being infected with COVID-19 whereas only 29% AKI was seen in critically ill patients of general population.[3]
- Acute Kidney Injury seen in COVID-19 infection can be from the cytotropic effect of the viral particles as well as systemic inflammatory response induced by the cytokines. Patients admitted with severe disease, acute respiratory distress syndrome (ARDS) or in patients admitted to ICU have a higher incidence of AKI . [7]. Other possible reasons that can play a role in AKI development, are multi-organ failure resulting in acute tubular necrosis (ATN), volume reduction causing prerenal ATN, high fever, drug toxicity, hemodynamic instability, and contrast exposure. [8] [9]
- Uptake of SARS-Cov-2 virus into proximal tubule cells is possible explanation for the AKI seen in COVID patients. Angiotensin-converting enzyme 2 and Dipeptidyl peptidase have been implicated in the uptake of SARS-Cov and MERS-CoV. These receptors are found in the proximal tubules of kidney..[10][11]ACE2: ACE ratio is higher in the kidneys compared to the respiratory system. (1:1 in the kidneys VS 1:20 in the respiratory system)).[12]SARS-CoV2 spike(S) protein is cleaved and activated by transmembrane serine protease family (TMPRSS) after attaching to angiotensin-converting enzyme 2 (ACE2) receptors. This allows the virus to release fusion peptide that aides in membrane fusion..[13]
- Pro-inflammatory cytokine levels are elevated in the COVID-19 infection and there is activation of T-call response. [14]There is higher cytokine levels and there is occurrence of cytokine storm in severe cases. In cytokine storm the, the immune system damages the healthy tissue rather than virus.[13] According to an autopsy report of six patients, the light microscopy revealed cluster of differentiation 68 (CD68)+ macrophage infiltration of the tubulointerstitium and severe ATN. The tubules showed complement 5b-9 deposition in all six cases, but deposition in glomeruli and capillaries were seldom seen. Some CD8+ T lymphocyte cells and CD56+ (natural killer) cells were seen in kidney tissue[15]
Lab Findings
Presenting symptoms in renal transplant patients are similar to those of non-renal transplant patients.
- Respiratory symptons
- Cough
- Chest Pain
- Dysnea
- Fever
- Hypoxia
- Lymphopenia
- High C-Reactive Protein[16]
Valuable prognostic blood tests that can be done are
- Lymphocyte count
- Renal transplant patients generally have a low lymphocyte count due to immunosuppression, hence finding a further drop in the lymphocyte count can be of prognostic value.
- D-dimer
- Ferritin
- Troponin
- Microvascular thrombosis and disseminated intravascular coagulation( with gut ischemia) can occur later in the course of illness. They are characterized by marked increase in the levels of D-dimer particularly. D dimer, ferritin, and troponin should be measured in all patients with severe COVID-19 infection on admission and in those who fail to show any clinical improvement.[16]
Management of immunosuppression in Transplant patients
In renal transplant patients, the immune responses are altered, especially the T cell response, due to generalized immunosuppression. Due to recent timeframe of outbreak of COVID-19 and insufficient scientific evidence, there is limited evidence on decreasing or changing the pattern of immunosuppression in renal transplant patients who have been infected with COVID-19. [17]
- Clinical presentation of COVID-19 infection in renal transplant patients are like the clinical presentations of infection in general population. [17].Moreover, renal transplant patients are generally immunocompromised, and this predisposes them to severe infection with COVID-19. Rejection of the graft can occur if immunosuppression is reduced in these patients. Hence given the high rate of mortality in COVID-19 infections, it is suggested that a careful risk vs benefits assessment of whether to continue immunosuppression should be done.[18]
- Managing the immunosuppression in renal transplant patients is difficult and should be based on[18]
- Age
- Severity of COVID-19 infection
- Presence of Co-Morbidities
- Time since the transplant
- In patients with mild to moderate infection, it has been a practice to continue or decrease the doses of immunosuppressive drugs, however this approach can cause high mortality in patients having COVID-19 infection.[18]
Treatment
Immunosuppresant Drugs
- Antiproliferative agents such as MMF and azathioprine [18]
- Should be stopped at the time of admission to hospital
- Prednisolone[18]
- The dosage can be either increased or left unchanged. These can provide immunological protection to the renal graft.
- Corticosteroids have beneficial effects such as
- Tacrolimus[18]
- Low doses of tacrolimus can be given but more evidence is required.[18]
- The dose should be reduced to 50%. Target levels for tacrolimus should be 3-5 ng/ml.[20]
- Tocilizumab.[18]
- COVID-19 infection has been found to cause cytokine storm and inflammation due to antiviral immune response, hence trials of anti-interleukin 6 monoclonal antibody Tocilizumab and continuing steroids in infected patients has been considered.
- Cyclosporine
- Cyclosporin A has been shown to have an inhibitory effect on proliferation of corona viruses and hepatitis C virus in vitro, not seen in tacrolimus. Cyclosporin A is thought to inhibit the replication of a diverse array of coronaviruses through its impact on cyclophilin A and B.[21][22]
- Cyclosporine levels should be targeted at 25-50 ng/ml.[20]
Medical Therapy
- With regard to specific antiviral therapies, although a recent trial showed no benefit of lopinavir-ritonavir in hospitalized patients with severe COVID-19, it remains possible that treatment with these drugs as well as hydroxychloroquine will be considered in patients with COVID-19 pneumonia.[23]
- Remdesiver inhibits the viral replication by pre mature termination of RNA transcription, and have shown activity in vitro against the viral agent.[24]Food and Drug Administration (FDA) in the USA has authorized its use in patients hospitalized with COVID-19.It is not recommended in patients with lower GFR (GFR < 30 mL/min).[25]
- The choice of calcineurin inhibitor may also be beneficial. For example, cyclosporin A has been shown to have an inhibitory effect on proliferation of corona viruses and hepatitis C virus in vitro, not seen in tacrolimus. Cyclosporin A is thought to inhibit the replication of a diverse array of coronaviruses through its impact on cyclophilin A and B.[21][22]
Primary Prevention
- Currently no vaccine has been developed against the SARS-CoV 2 virus.[26]
General Measures for Renal transplant Patients
- The kidney transplant population must comply with the recommended measures of protection in the general population. Physicians can recommend the use of a mask on an individual basis, especially when the patient goes to health center or other place with agglomeration. People who show symptoms of being infected with SARS-CoV-2 should wear masks to prevent the spread of the disease to others..[27]
- It is prudent to approve a sick leave in patients whose profession involves a high hazard for disease.[27]
- It is recommended to screen kidney transplant patients through teleconsultation so as to decrease the time spent in healthcare centers and decrease the risk of infection [27]
- Maintenance of general hygiene. Washing your hands as often as possible with cleanser and water, or with a alcohol based hand sanitizer (60% alc), particularly: after utilizing the restroom, before eating, in the wake of blowing, coughing or sneezing and after direct contact with patient or their surroundings. Abstain from touching your eyes, nose and mouth before washing your hands.[27]
- Regular cleaning of home with disinfection of objects and surfaces.[27]
- Keep a distance of at least two metres from people with general symptoms such as fever, cough, malaise, sore throat or dyspnea). Abstain from sharing personal belongings.[27]
- During the lockdown circumstance you should stay at home aside from the specified exemptions, as indicated by the standards built up by the political and wellbeing specialists. Telephone the kidney transplant facility at your referral community or the telephone numbers approved by the wellbeing specialists.[27]
- Attempt to follow a right eating routine. Abstain from smoking and liquor. These substances weaken the immune system, and increase the risk of infectious diseases.[27]
Specific recommendations for kidney transplant patients suspected of SARS-CoV-2 infection
All kidney transplant patients with suspected symptoms of COVID-19 are advised to contact their healthcare provider (ideally by phone), to discuss the full course of their treatment and other chronic conditions that they are having. Depending upon the symptoms :-
- Mild symptoms ie
- without Dyspnea or Tachypnea
- Temperature <38°C
- Kidney receptor with adequate functional reserves
- The patient can be asked to remain in contact via teleconsultation to have the diagnostic tests performed, monitor the symptoms and communicate alarming to the transplant team every 24–48h.
- Moderate/Severe symptoms
- Temperature >38°C
- Presence of Dyspnea
- Presence of Tachypnea
- Fragile Kidney receptor
- Patient can be asked to report to Emergency Department for clinical evaluation..[27]
References
- ↑ Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B (March 2020). "Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study". Lancet. 395 (10229): 1054–1062. doi:10.1016/S0140-6736(20)30566-3. PMC 7270627 Check
|pmc=
value (help). PMID 32171076 Check|pmid=
value (help). - ↑ Michaels, Marian G.; La Hoz, Ricardo M.; Danziger-Isakov, Lara; Blumberg, Emily A.; Kumar, Deepali; Green, Michael; Pruett, Timothy L.; Wolfe, Cameron R. (2020). "Coronavirus disease 2019: Implications of emerging infections for transplantation". American Journal of Transplantation. doi:10.1111/ajt.15832. ISSN 1600-6135.
- ↑ 3.0 3.1 Yang, Xiaobo; Yu, Yuan; Xu, Jiqian; Shu, Huaqing; Xia, Jia'an; Liu, Hong; Wu, Yongran; Zhang, Lu; Yu, Zhui; Fang, Minghao; Yu, Ting; Wang, Yaxin; Pan, Shangwen; Zou, Xiaojing; Yuan, Shiying; Shang, You (2020). "Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study". The Lancet Respiratory Medicine. 8 (5): 475–481. doi:10.1016/S2213-2600(20)30079-5. ISSN 2213-2600.
- ↑ 4.0 4.1 Naicker, Saraladevi; Yang, Chih-Wei; Hwang, Shang-Jyh; Liu, Bi-Cheng; Chen, Jiang-Hua; Jha, Vivekanand (2020). "The Novel Coronavirus 2019 epidemic and kidneys". Kidney International. 97 (5): 824–828. doi:10.1016/j.kint.2020.03.001. ISSN 0085-2538.
- ↑ Pei, Guangchang; Zhang, Zhiguo; Peng, Jing; Liu, Liu; Zhang, Chunxiu; Yu, Chong; Ma, Zufu; Huang, Yi; Liu, Wei; Yao, Ying; Zeng, Rui; Xu, Gang (2020). "Renal Involvement and Early Prognosis in Patients with COVID-19 Pneumonia". Journal of the American Society of Nephrology. 31 (6): 1157–1165. doi:10.1681/ASN.2020030276. ISSN 1046-6673.
- ↑ 6.0 6.1 Sharma, Garima; Volgman, Annabelle Santos; Michos, Erin D. (2020). "Sex Differences in Mortality From COVID-19 Pandemic". JACC: Case Reports. doi:10.1016/j.jaccas.2020.04.027. ISSN 2666-0849.
- ↑ Zhou, Fei; Yu, Ting; Du, Ronghui; Fan, Guohui; Liu, Ying; Liu, Zhibo; Xiang, Jie; Wang, Yeming; Song, Bin; Gu, Xiaoying; Guan, Lulu; Wei, Yuan; Li, Hui; Wu, Xudong; Xu, Jiuyang; Tu, Shengjin; Zhang, Yi; Chen, Hua; Cao, Bin (2020). "Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study". The Lancet. 395 (10229): 1054–1062. doi:10.1016/S0140-6736(20)30566-3. ISSN 0140-6736.
- ↑ Beddhu, Srinivasan (2004). "Hypothesis: The Body Mass Index Paradox and an Obesity, Inflammation, and Atherosclerosis Syndrome in Chronic Kidney Disease". Seminars in Dialysis. 17 (3): 229–232. doi:10.1111/j.0894-0959.2004.17311.x. ISSN 0894-0959.
- ↑ Mohamed, Muner MB; Lukitsch, Ivo; Torres-Ortiz, Aldo E; Walker, Joseph B; Varghese, Vipin; Hernandez-Arroyo, Cesar F; Alqudsi, Muhannad; LeDoux, Jason R; Velez, Juan Carlos Q (2020). "Acute Kidney Injury Associated with Coronavirus Disease 2019 in Urban New Orleans". Kidney360: 10.34067/KID.0002652020. doi:10.34067/KID.0002652020. ISSN 2641-7650.
- ↑ Li, Wenhui; Moore, Michael J.; Vasilieva, Natalya; Sui, Jianhua; Wong, Swee Kee; Berne, Michael A.; Somasundaran, Mohan; Sullivan, John L.; Luzuriaga, Katherine; Greenough, Thomas C.; Choe, Hyeryun; Farzan, Michael (2003). "Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus". Nature. 426 (6965): 450–454. doi:10.1038/nature02145. ISSN 0028-0836.
- ↑ Raj, V. Stalin; Mou, Huihui; Smits, Saskia L.; Dekkers, Dick H. W.; Müller, Marcel A.; Dijkman, Ronald; Muth, Doreen; Demmers, Jeroen A. A.; Zaki, Ali; Fouchier, Ron A. M.; Thiel, Volker; Drosten, Christian; Rottier, Peter J. M.; Osterhaus, Albert D. M. E.; Bosch, Berend Jan; Haagmans, Bart L. (2013). "Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC". Nature. 495 (7440): 251–254. doi:10.1038/nature12005. ISSN 0028-0836.
- ↑ Malha, Line; Mueller, Franco B.; Pecker, Mark S.; Mann, Samuel J.; August, Phyllis; Feig, Peter U. (2020). "COVID-19 and the Renin-Angiotensin System". Kidney International Reports. 5 (5): 563–565. doi:10.1016/j.ekir.2020.03.024. ISSN 2468-0249.
- ↑ 13.0 13.1 Pan, Xiu-wu; Xu, Da; Zhang, Hao; Zhou, Wang; Wang, Lin-hui; Cui, Xin-gang (2020). "Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis". Intensive Care Medicine. 46 (6): 1114–1116. doi:10.1007/s00134-020-06026-1. ISSN 0342-4642.
- ↑ Huang, Chaolin; Wang, Yeming; Li, Xingwang; Ren, Lili; Zhao, Jianping; Hu, Yi; Zhang, Li; Fan, Guohui; Xu, Jiuyang; Gu, Xiaoying; Cheng, Zhenshun; Yu, Ting; Xia, Jiaan; Wei, Yuan; Wu, Wenjuan; Xie, Xuelei; Yin, Wen; Li, Hui; Liu, Min; Xiao, Yan; Gao, Hong; Guo, Li; Xie, Jungang; Wang, Guangfa; Jiang, Rongmeng; Gao, Zhancheng; Jin, Qi; Wang, Jianwei; Cao, Bin (2020). "Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China". The Lancet. 395 (10223): 497–506. doi:10.1016/S0140-6736(20)30183-5. ISSN 0140-6736.
- ↑ Diao, Bo; Wang, Chenhui; Wang, Rongshuai; Feng, Zeqing; Tan, Yingjun; Wang, Huiming; Wang, Changsong; Liu, Liang; Liu, Ying; Liu, Yueping; Wang, Gang; Yuan, Zilin; Ren, Liang; Wu, Yuzhang; Chen, Yongwen (2020). doi:10.1101/2020.03.04.20031120. Missing or empty
|title=
(help) - ↑ 16.0 16.1 Banerjee, Debasish; Popoola, Joyce; Shah, Sapna; Ster, Irina Chis; Quan, Virginia; Phanish, Mysore (2020). "COVID-19 infection in kidney transplant recipients". Kidney International. 97 (6): 1076–1082. doi:10.1016/j.kint.2020.03.018. ISSN 0085-2538.
- ↑ 17.0 17.1 Zhu, Lan; Xu, Xizhen; Ma, Ke; Yang, Junling; Guan, Hanxiong; Chen, Song; Chen, Zhishui; Chen, Gang (2020). "Successful recovery of COVID‐19 pneumonia in a renal transplant recipient with long‐term immunosuppression". American Journal of Transplantation. doi:10.1111/ajt.15869. ISSN 1600-6135.
- ↑ 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 Banerjee D, Popoola J, Shah S, Ster IC, Quan V, Phanish M (June 2020). "COVID-19 infection in kidney transplant recipients". Kidney Int. 97 (6): 1076–1082. doi:10.1016/j.kint.2020.03.018. PMC 7142878 Check
|pmc=
value (help). PMID 32354637 Check|pmid=
value (help). - ↑ Lansbury, Louise E.; Rodrigo, Chamira; Leonardi-Bee, Jo; Nguyen-Van-Tam, Jonathan; Shen Lim, Wei (2020). "Corticosteroids as Adjunctive Therapy in the Treatment of Influenza". Critical Care Medicine. 48 (2): e98–e106. doi:10.1097/CCM.0000000000004093. ISSN 0090-3493.
- ↑ 20.0 20.1 "www.massgeneral.org" (PDF).
- ↑ 21.0 21.1 de Wilde, Adriaan H.; Zevenhoven-Dobbe, Jessika C.; van der Meer, Yvonne; Thiel, Volker; Narayanan, Krishna; Makino, Shinji; Snijder, Eric J.; van Hemert, Martijn J. (2011). "Cyclosporin A inhibits the replication of diverse coronaviruses". Journal of General Virology. 92 (11): 2542–2548. doi:10.1099/vir.0.034983-0. ISSN 0022-1317.
- ↑ 22.0 22.1 Tanaka, Yoshikazu; Sato, Yuka; Sasaki, Takashi (2013). "Suppression of Coronavirus Replication by Cyclophilin Inhibitors". Viruses. 5 (5): 1250–1260. doi:10.3390/v5051250. ISSN 1999-4915.
- ↑ Cao, Bin; Wang, Yeming; Wen, Danning; Liu, Wen; Wang, Jingli; Fan, Guohui; Ruan, Lianguo; Song, Bin; Cai, Yanping; Wei, Ming; Li, Xingwang; Xia, Jiaan; Chen, Nanshan; Xiang, Jie; Yu, Ting; Bai, Tao; Xie, Xuelei; Zhang, Li; Li, Caihong; Yuan, Ye; Chen, Hua; Li, Huadong; Huang, Hanping; Tu, Shengjing; Gong, Fengyun; Liu, Ying; Wei, Yuan; Dong, Chongya; Zhou, Fei; Gu, Xiaoying; Xu, Jiuyang; Liu, Zhibo; Zhang, Yi; Li, Hui; Shang, Lianhan; Wang, Ke; Li, Kunxia; Zhou, Xia; Dong, Xuan; Qu, Zhaohui; Lu, Sixia; Hu, Xujuan; Ruan, Shunan; Luo, Shanshan; Wu, Jing; Peng, Lu; Cheng, Fang; Pan, Lihong; Zou, Jun; Jia, Chunmin; Wang, Juan; Liu, Xia; Wang, Shuzhen; Wu, Xudong; Ge, Qin; He, Jing; Zhan, Haiyan; Qiu, Fang; Guo, Li; Huang, Chaolin; Jaki, Thomas; Hayden, Frederick G.; Horby, Peter W.; Zhang, Dingyu; Wang, Chen (2020). "A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19". New England Journal of Medicine. 382 (19): 1787–1799. doi:10.1056/NEJMoa2001282. ISSN 0028-4793.
- ↑ Wang, Manli; Cao, Ruiyuan; Zhang, Leike; Yang, Xinglou; Liu, Jia; Xu, Mingyue; Shi, Zhengli; Hu, Zhihong; Zhong, Wu; Xiao, Gengfu (2020). "Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro". Cell Research. 30 (3): 269–271. doi:10.1038/s41422-020-0282-0. ISSN 1001-0602.
- ↑ Sanders, James M.; Monogue, Marguerite L.; Jodlowski, Tomasz Z.; Cutrell, James B. (2020). "Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19)". JAMA. doi:10.1001/jama.2020.6019. ISSN 0098-7484.
- ↑ Adapa, Sreedhar; Chenna, Avantika; Balla, Mamtha; Merugu, Ganesh Prasad; Koduri, Narayana Murty; Daggubati, Subba Rao; Gayam, Vijay; Naramala, Srikanth; Konala, Venu Madhav (2020). "COVID-19 Pandemic Causing Acute Kidney Injury and Impact on Patients With Chronic Kidney Disease and Renal Transplantation". Journal of Clinical Medicine Research. 12 (6): 352–361. doi:10.14740/jocmr4200. ISSN 1918-3003.
- ↑ 27.0 27.1 27.2 27.3 27.4 27.5 27.6 27.7 27.8 López, Verónica; Vázquez, Teresa; Alonso-Titos, Juana; Cabello, Mercedes; Alonso, Angel; Beneyto, Isabel; Crespo, Marta; Díaz-Corte, Carmen; Franco, Antonio; González-Roncero, Francisco; Gutiérrez, Elena; Guirado, Luis; Jiménez, Carlos; Jironda, Cristina; Lauzurica, Ricardo; Llorente, Santiago; Mazuecos, Auxiliadora; Paul, Javier; Rodríguez-Benot, Alberto; Ruiz, Juan Carlos; Sánchez-Fructuoso, Ana; Sola, Eugenia; Torregrosa, Vicente; Zárraga, Sofía; Hernández, Domingo (2020). "Recommendations on management of the SARS-CoV-2 coronavirus pandemic (Covid-19) in kidney transplant patients". Nefrología (English Edition). doi:10.1016/j.nefroe.2020.03.017. ISSN 2013-2514.