Tuberculosis future or investigational therapies

Jump to navigation Jump to search

Tuberculosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Tuberculosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Children

HIV Coinfection

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Special Conditions
Drug-resistant

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Tuberculosis future or investigational therapies On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Tuberculosis future or investigational therapies

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Tuberculosis future or investigational therapies

CDC on Tuberculosis future or investigational therapies

Tuberculosis future or investigational therapies in the news

Blogs on Tuberculosis future or investigational therapies

Directions to Hospitals Treating Tuberculosis

Risk calculators and risk factors for Tuberculosis future or investigational therapies

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] ; Associate Editor(s)-in-Chief: Mashal Awais, M.D.[2]; Ammu Susheela, M.D. [3] ; Marjan Khan M.B.B.S.[4]

Overview

Since new drug-resistant tuberculosis has been emerging, the role of future therapies is vital in curbing outbreaks. The new drugs are required to be more effective than the current regimen and a few drugs in clinical trials have been showing good results.

Future investigations

Principles of future investigations

Any future regimen should satisfy the following principles. [1]

  • It should not have more than a maximum duration of 6 months
  • The dosing schedule must be simple
  • The number of drugs ideally should not be more than 3-5 drug from a different class
  • It should have a minimum side effect profile so that we could have minimum monitoring
  • It should be effective against MDR, XDR, and XXDR strains
  • It should be administered orally
  • It should have minimum interaction with antiretroviral drugs.
  • It should have at least one new class of drug

New drugs involved in a clinical trial for the treatment of tuberculosis

Drug Phase Class
Moxifloxacin Phase III Fluoroquinolone
Linezolid Phase II Oxazolidinone
AZD-5847 Phase II Oxazolidinone
Sutezolid Phase II Oxazolidinone
Clofazimine Phase II Riminophenazine
SQ-109 Phase II Ethylenediamine
PA-824 Phase IIb Nitroimidazole
Delamanid Phase III Nitroimidazole
Bedaquiline Phase III Diarylquinoline
Data provided by WHO[2]

Tuberculosis vaccine development

  • Neonatal BCG vaccination is partially effective at protecting infants and children, particularly from the most severe consequences of TB disease.[3]
  • BCG is poorly protective against pulmonary disease in adults, and therefore at reducing Mycobactarium tuberculosis transmission.[3]
  • A new novel vaccine is warranted in decreasing the incidence and mortality of Tuberculosis; a vaccine that is effective in adult individuals who have not yet been infected with Mycobacterium tuberculosis, as well as in those with latent Mycobacterium tuberculosis infection.[3]
  • This new novel vaccines will also offer the best chance to contain the accelerating spread of multi-drug resistant tuberculosis.[3]
  • To this date this new vaccine has not been develop but many TB vaccine candidate are in pipeline.[3]
  • Potential vaccines are either whole cell vaccines, adjuvanted proteins, and vectored subunit vaccines.[3]
  • Up till now, there was no communicated consensus as to the preferred product characteristics (PPC) that would adequately support favorable policy recommendations for implementation where needed.[3]
  • A document highlighting WHO preferred Product Characteristics (PPC) for new TB vaccines has been devised based on a high unmet medical need and technical feasibility assessment.[3]
  • The preferred product characteristics (PPC) describe WHO preferences for parameters of vaccines, in particular their indications, target groups, possible immunization strategies, and features of clinical data desired related to safety and efficacy, supportive of policy decision making.[3]
  • The vaccine PPCs are built through a wide consensus building process and result from interactions with a variety of stakeholders.[3]
  • The new vaccine, made by GSK and now known as M72/AS01E, was tested in about 3,300 adults in Kenya, South Africa, and Zambia.
  • All of them already had latent tuberculosis, Of those who got two doses of the GSK vaccine, only 13 developed active tuberculosis during three years of follow-up, according to the new study published in The New England Journal of Medicine. By contrast, 26 of those who got a placebo progressed to active tuberculosis.

References

  1. "Future therapy purposed by WHO".
  2. "Tuberculosis (TB) Future drugs".
  3. 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 "WHO | Tuberculosis vaccine development, SYSTEM DO NOT MOVE OR EDIT".

Template:WH Template:WS