Thrombophilia pathophysiology

Jump to navigation Jump to search

Thrombophilia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Thrombophilia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Thrombophilia pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Thrombophilia pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Thrombophilia pathophysiology

CDC on Thrombophilia pathophysiology

Thrombophilia pathophysiology in the news

Blogs on Thrombophilia pathophysiology

Directions to Hospitals Treating Thrombophilia

Risk calculators and risk factors for Thrombophilia pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Asiri Ediriwickrema, M.D., M.H.S. [2] Jaspinder Kaur, MBBS[3]

Overview

The pathogenesis of thrombophilia is multi-factorial. It is characterized by hypercoagulability, which by itself or in synergy with endothelial injury or stasis (Virchow's Triad) can predispose to clot formation. Multiple genetic mutations and predisposing conditions have been associated with the increased risk of thrombosis due to abnormalities in the coagulation cascade.[1] The most common genes involved in the pathogenesis of acquired thrombophilias are Factor V Leiden and prothrombin gene mutations.

Pathophysiology

  • Coagulation is an inherent property of the hematologic system and normal blood flow is maintained by the balance between the pro-coagulant and anti-thrombotic factors under healthy conditions. A hypercoagulable state and subsequent thromboembolism is a result of overactivity of pro-coagulant factors or a deficiency in anti-coagulants. Anticoagulants that regulate thrombin include antithrombin, protein C, and protein S. The primary mechanism for thrombus formation in common inherited thrombophilic states involves thrombin dysregulation. However, the interplay of these factors is complicated process consisting of coagulation activators and inhibitors and their production and degradation (quantitative) and functional properties (qualitative) influencing the thrombosis process.
Thrombus formation in inherited thrombophilia. In thrombophilia, procoagulant and anticoagulant factors are dysregulated leading to thrombus formation

Figure 1: Thrombus formation in inherited thrombophilias. Adapted from: N Engl J Med. 2001 Apr 19;344(16):1222-31.[1]

Antithrombin III (ATIII) deficiency

  • Antithrombin (previously called antithrombin III) is synthesized by the liver but is not vitamin K-dependent. Its inhibitory effect is not confined to thrombin. It also inhibits the activated clotting factors IXa, Xa, XIa, XIIa and tissue factor-bound factor VIIa. Antithrombin III binds to heparin on endothelial cells and forms a complex between antithrombin and the serine proteases and thus, inhibiting coagulation. Mutations in antithrombin can lead to increased thrombus formation. [2]
  • The prevalence may be 1 in 500 in the general population. Affected patients have antithrombin levels 40–60% of normal, and 70% of those affected experience thrombo-embolic events before the age of 50. Thrombotic episodes are rare before puberty in AT-deficient individuals. They start to occur with some frequency after puberty, with the risk increasing substantially with advancing age.
  • Type of inheritance: Antithrombin (AT) deficiency is a heterogeneous disorder. It is usually inherited in an autosomal dominant fashion, thereby affecting both sexes equally. Homozygous ATIII deficiency is incompatible with life unless affecting the heparin-binding site.
  • Causes: ATIII deficiency can occur as a consequence of reduced synthesis (liver damage) or increased loss (nephrotic syndrome, enteropathy, DIC, sepsis, burn, trauma, microangiopathy, and cardiopulmonary bypass surgery). Usually these patients present with venous thrombosis and less likely with arterial thrombosis.
  • Classification: Three major types of heritable AT deficiency are recognized as follows:
    • Type I: It is characterized by a quantitative reduction of qualitatively (functionally) normal antithrombin protein and thereby reducing both the antigenic and functional activity of AT in the blood. The values are reduced by approximately 50 percent in the heterozygote. The 1997 antithrombin mutation database included 80 distinct mutations in patients with type I deficiency. The database shows that the molecular basis for this disorder is usually a small deletion or insertion (less than 22 base pairs) or a deletion of a major segment of the AT gene.
    • Type II: It is produced by a discrete molecular qualitative mutational defect within the protein which either affect the heparin-binding site (HBS), the reactive site (RS) or result in pleiotropic effects (PE). While the AT immunologic activity is normal in this deficiency, plasma AT functional activity is markedly reduced leading to risk of thrombosis. It is subclassified according to the site of the molecular defect:
      • Reactive site (RS) and abnormalities residing in the reactive (thrombin binding) site.
      • Heparin binding site (HBS) and abnormalities residing in the heparin binding site.
      • Pleiotropic effect (PE) and abnormalities residing in both reactive and heparin binding sites.
    • Type III: This type is characterized by normal functional and antigenic antithrombin levels but impaired interaction between AT and heparin.

Protein C deficiency

  • It present as thrombosis in teenagers. Protein C and S deficiency may be inherited but is also inducable by liver dysfunction, vitamin k antagonists, renal failure, DIC, and active thrombosis. Protein S enhances the effect of activated protein C. Protein S deficiency can be classified as type I (reduced quantity of protein S), type II (low APC activity), and type III (low free protein S due to increased binding to the complement factor C4b). The interaction of protein S with C4, which is an active phase reactant exemplifies the relation of coagulation, inflammation, and autoimmunity. The half-life of protein C is shorter than the half-life of other vitamin K-dependent coagulation factors, hence the risk of increased coagulation with the initiation of vitamin K antagonists and need for bridging with parenteral heparin (warfarin-induced skin necrosis). Protein C is a vitamin K-dependent glycoprotein that is synthesized in the liver. Before activation by the thrombin±thrombomodulin complex on the endothelial cell surface, it circulates as a two-chain zymogen. By degrading activated clotting factors Va and VIIIa, activated protein C (APC) functions as one of the major inhibitors of the coagulation system. Activated protein C also reduces platelet prothrombinase activity by degrading platelet bound factor Va at the receptor for factor Xa. The inhibitory effects of activated protein C are facilitated through the cofactor activity of protein S.

Protein C deficiency is a rare disorder, characterized by a reduction in the activity of protein C, a plasma serine protease involved in the regulation of blood coagulation. The active form of protein C, activated protein C (APC), exerts potent anticoagulant activity. A deficiency in protein C is characterized by the inability to control coagulation, resulting in the excessive formation of blood clots (thrombophilia). Protein C deficiency may be acquired or congenital. Congenital protein C deficiency results from mutations in the PROC gene. More than 160 PROC mutations have been described and may result in reduced levels of protein C (Type I) or the production of an altered protein C molecule with decreasing levels of activity (Type II). Protein C deficiency is an autosomal dominant condition. Mutations in a single copy in heterozygous individuals cause mild protein C deficiency, whereas individuals with homozygous mutations present with severe protein C deficiency. Protein C is a vitamin K-dependent protease circulating in plasma at low concentrations and serves a critical role in the regulation of thrombin. Levels of protein C mature later than many other coagulation proteins, with levels increasing from birth until 6 months and into puberty. Protein C becomes activated to form activated protein C (APC) via interactions with thrombin. APC acts to downregulate coagulation by cleaving and inactivating clotting factors V and VIII. A deficiency of protein C, and thus APC activity, leads to an inability to inactivate clotting factors and control thrombin production. Protein C is also known to have a role in the regulation of inflammation and sepsis, with demonstrated cytoprotective functions. Protein C deficiency is less common than either the factor V Leiden or the prothrombin G20210A gene mutation with prevalence in Caucasians estimated to be 0.2–0.5%. Protein C deficiency is inherited in an autosomal dominant manner and is associated with familial venous thrombosis. The gene for protein C is located on chromosome 2 (2q13–14) and appears to be closely related to the gene for factor IX. The primary effect of activated protein C (APC) is to inactivate coagulation factors Va and VIIIa, which are necessary for efficient thrombin generation and factor X activation. The inhibitory effect of APC is markedly enhanced by protein S, another vitamin K-dependent protein. Reduced protein C activity is observed in patients with disseminated intravascular disease (DIC) and in liver disease. Protein C activity is reduced markedly by coumarins.

Two major subtypes of heterozygous protein C deficiency (Type I and Type II) have been delineated using immunologic and functional assays. Over 160 different gene abnormalities have been associated with the two subtypes. Type I deficiency – The type I deficiency state is more common. Most affected patients are heterozygous, having a reduced plasma protein C concentration at approximately 50 percent of normal in both immunologic and functional assays. More than half of the mutations identified so far are missense and nonsense mutations. Other types of mutations include promoter mutations, splice site abnormalities. in-frame deletions, frameshift deletions, in-frame insertions, and frameshift insertions. There is marked phenotypic variability among patients with heterozygous type I protein C deficiency. Similar mutations have been found among symptomatic and asymptomatic individuals. This finding suggests that the nature of the protein C gene defect alone does not explain the phenotypic variability. Type II deficiency – Individuals with the type II deficiency state have normal plasma protein C antigen levels with decreased functional activity. A variety of different point mutations affecting protein function have been identified in this disorder.

Homozygotes can develop a severe thrombotic tendency in infancy characterized as purpura fulminans. Heterozygotes for protein C deficiency have an increased risk of developing warfarin-induced skin necrosis. Protein C deficiency has been implicated in adverse pregnancy outcomes such as DVT, preeclampsia, intrauterine growth restriction and recurrent pregnancy loss.

Protein S deficiency

  • Protein S, another vitamin K-dependent protein, is a cofactor for activated protein C. Approximately 65% of the total plasma protein S is complexed with C4b-binding protein (C4bBP) and has no cofactor activity. The remaining 35%, designated free protein S, remains uncomplexed and is the active moiety. The bioavailability of protein S is closely linked to the concentration of C4bBP, which acts as an important regulatory protein in the activated protein C:protein S inhibitory pathway. Protein S levels are slightly higher in men than in women. Protein S levels fall progressively during pregnancy and are reduced to a lesser extent in women using oestrogencontaining oral contraceptives or hormone replacement therapy. Overdiagnosis of protein S deficiency is therefore a risk. Acquired protein S deficiency is also seen in patients on coumarins, in those with antiphospholipid antibodies and in disseminated intravascular coagulation and liver disease. Protein S deficiency is usually congenital, caused by mutations in the PROS1 gene. More than 200 PROS mutations have been described and may result in three different forms of protein S deficiency:
    • Type I: quantitative defect presenting with low levels of total protein S (TPS) and free protein S (FPS), with reduced levels of protein S activity.Type I – The classic type of protein S deficiency is associated with a decreased level of total S antigen (approximately 50% of normal), and marked reductions in free protein S antigen and protein S functional activity.
    • Type II (also known as Type IIb): Decreased protein S activity, with normal levels of TPS and FPS antigens. This type of protein S deficiency is characterized by normal total and free protein S levels, but diminished protein S functional activity. Interestingly, all five mutations originally described in these patients were missense mutations located in the N-terminal end of the protein S molecule, which includes the domains that interact with activated protein C.
    • Type III (also known as Type IIa): quantitative defect presenting with normal levels of TPS, but reduced levels of FPS and protein S activity. This is characterized by total protein S antigen measurements in the normal range and selectively reduced levels of free protein S and protein S functional activity to less than approximately 40 percent of normal.

Protein S deficiency is an autosomal dominant pathology. Mutations in a single copy in heterozygous individuals cause mild protein S deficiency, whereas individuals with homozygous mutations present with severe protein S deficiency. Causes of temporary acquired fluctuations in protein S levels may include vitamin K-antagonist therapy, chronic infections, severe hepatic disease, nephritic syndrome, and DIC. The risk of VTE is also increased in patients using oral contraceptives and pregnancy. Protein S is a vitamin K-dependent protease that circulates in plasma at low concentrations and serves a crucial role in the regulation of coagulation. In circulation, approximately 40% of protein S is free, and about 60% is in a high-affinity complex with the complement regulatory factor C4b-binding protein (C4BP). The anticoagulant activity of protein S is two-fold: Protein S operates as a cofactor for activated protein C (APC), and inactivating coagulation Factor Va and Factor VIIIa; and Protein S is also a cofactor for the tissue factor pathway inhibitor (TFPI) protein, resulting in the inactivation of Factor Xa and tissue factor (TF)/Factor VIIa. Protein S is a complex protein with multiple structural moieties. The 3-dimensional structure is yet to be resolved but is expected to contribute to the understanding of the complex functional nature of PROS1 mutations.

Factor V Leiden mutation

  • The most common inherited thrombophilia is Factor V Leiden which is a polymorphism of Factor V that is resistant to APC inactivation. Other FV mutations include factor V Cambridge and factor V Hong Kong. [1]
  • Activated protein C (APC): Protein C interacts with thrombomodulin to become APC which has anticoagulant, anti-inflammatory, and cytoprotective properties. The signal cascade leading to APC can become distorted through many acquired or inherited mechanisms leading to APC resistance. Hence, APC resistance occurs when APC fails to inactivate downstream coagulation factors, specifically Factor V and Factor VIII.
  • The factor V Leiden mutation further increases arterial thrombosis risk by enhancing thrombin production. Protein C and S are natural anticoagulants which inhibit thrombin formation. Dysregulation in activated protein C (APC) can occur as either defects in the protein C or S molecule (Protein C and S deficiency) or as resistance to APC activity.[1]

Prothrombin G20210A mutation

  • Prothrombin (factor II) is the precursor to thrombin, the end-product of the coagulation cascade. Prothrombin has procoagulant, anticoagulant and antifibrinolytic activities and thus a disorder involving prothrombin results in multiple hemostasis imbalances.
  • It is the second most common inherited thrombophilia which involves a gain of function mutation of the prothrombin gene (Prothrombin G20210A) resulting in increased protein activity and thrombus formation.[3]
  • It is due to a single point mutation which involves the G to A transition at nucleotide 20210 in the 30-untranslated region of the prothrombin gene and thereby associated with elevated plasma prothrombin levels and demonstrating a higher risk for arterial and venous thrombotic events.

Hyperhomocysteinemia

  • Homocystinuria and hyperhomocysteinemia are rare metabolism disorder associated with the marked elevations of plasma and urine homocysteine concentrations resulting from an impaired intracellular metabolism of homocysteine which can be due to both genetic and acquired abnormality.
  • Homocysteine is an amino acid derived from methionine which is metabolized by the body in two possible following pathways:
    • Transsulfuration of homocysteine produces cysteine, and this reaction is catalyzed by cystathionine-β-synthase which requires pyridoxal phosphate (Vitamin B) as a cofactor.
    • Remethylation of homocysteine produces methionine which is catalyzed either by methionine synthase or by betaine homocysteine methyltransferase. Vitamin B12 (cobalamin) is the precursor of methylcobalamin, which is the cofactor for methionine synthase.
  • Nutritional deficiencies in vitamin cofactors such as vitamin B6, B12, and folate or genetic defects of enzymes such as cystathionine beta-synthase (CBS) or methylenetetrahydrofolate reductase (MTHFR) decrease the efficiency of homocysteine metabolism. Furthermore, chronic medical conditions such as renal failure, hypothyroidism, and drugs such as methotrexate, phenytoin, and carbamazepine increase homocysteine levels.
  • Hence, premature atherosclerosis and arterial thrombosis is associated with severe hyperhomocysteinemia.

Elevated factor VIII (FVIII)

  • Higher levels: African-Americans appear to have its higher levels. It further increases the risk of thrombosis, and found to be correlated with acute phase reactions, estrogen usage, pregnancy, and aerobic exercise.
  • Lower levels: Individuals with blood group "O" tend to have lower levels of FVIII and correlated with bleeding in hemophilia A patients.

Dysfibrinolysis

  • Plasminogen deficiency, dysfibrinogenemia, tissue plasminogen activator (tPA) deficiency, plasminogen activator inhibitor (PAI) increase, and factor XII deficiency impairs plasmin generation.
  • Dysfibrinogenemia: The patients with structural or functional changes to fibrinogen result in dysfibrinogenemia through an abnormal thrombin-mediated conversion to fibrin and thereby, developing the risk for thrombosis or bleeding. Most patients are clinically asymptomatic inspite of having predisposition for bleeding, thrombosis or both.[4]

Antiphospholipid syndrome (APS)

  • It is the most common acquired thrombophilia in which antibodies are directed against natural constituents of cell membranes, the phospholipids.
  • These antiphospholipid antibodies (APLA) consisting of lupus anticoagulant, anticardiolipin, and anti-beta-2-glycoprotein occur in 3 to 5% of the population and may cause arterial or venous thrombosis and fetal loss.
  • APLA may occur secondary to other diseases such as collagen vascular disease or infections or drugs like phenytoin.
  • Hence, any patient presenting with stroke, deep vein thrombosis, and rheumatological disorder should be screened for underlying antiphospholipid antibody syndrome.

Malignancy

  • It is the second most common acquired hypercoagulability which leads to a prothrombotic state through the production of procoagulant factors (tissue factor and cancer procoagulant) and the interaction of tumor cells with blood and vascular endothelium further associated with vascular stasis from tumor compression, paraproteinemia, and cytokine release.
  • In 85% cases, cancer procoagulant (CP) is elevated which activates factor X, and thus causing hypercoagulability in cancer patients.
  • Migratory thrombophlebitis known as Trousseau syndrome and Polycythemia vera poses a thrombotic risk in addition to hyperviscosity.
  • The interaction of malignancy and coagulation not only favors thrombosis but also the hemostatic system which influences angiogenesis and support tumor growth and spread. Hence, targeting the hemostatic system might offer treatment options for anticancer therapy.

Smoking

  • Smoking tobacco contains various toxins such as nicotine which results in endothelial cell damage.
  • The release of tissue plasminogen activator (tPA) and tissue factor pathway inhibitor (TFPI) get reduced.
  • Carbon monoxide increases the permeability of endothelium to lipids thus leading to atheroma formation.
  • Hence, arterial bypass grafts fail prematurely in smokers.

Exercise

  • Exercise influences coagulation, fibrinolysis, and platelet aggregation which is usually kept in balance; however, in some cases the immediate postexercise period is characterized by a hypercoagulable state with an increase of factor eight (intrinsic pathway activation) and platelet activation.
  • Although exercise improves the cardiovascular risk profile; but older individuals carry more cardiovascular risk factors and are less well trained. Thus, they are prone to suffer adverse effects from the temporary hypercoagulable state following exercise.

Pregnancy

  • The physiological changes that occur during pregnancy presents a time of hypercoagulability extending from 2 months of gestation into the postpartum period through the increase of procoagulants (diverse coagulation factors and the number of platelets) and the decrease of anticoagulants (PAI) in addition to stasis caused by compression of the gravid uterus.
  • Hematological changes: A number of clotting factors including factor VII, factor VIII, Factor X, von Willebrand factor, and fibrinogen are elevated as a result of hormonal changes. At the same time, resistance to activated protein C increases in the second and third trimesters and the activity of protein S is decreased due to changes in the total protein S antigen level. There is also an increase in a number of inhibitors of the fibrinolytic pathway such as activatable fibrinolytic inhibitor (TAFI) and plasminogen activator inhibitor 1 and 2 (PAI-1 and PAI-2).
  • Physical changes: An increased pressure on the pelvic veins from the gravid uterus and decreased flow in the lower extremities result in increased stasis and thrombotic state. Relative compression of the left iliac vein by the right iliac artery as it courses across the vessel leads to an increase of clots in the left iliac vein. Although stasis increases throughout the course of pregnancy and leg pain and swelling are more frequent during the third trimester, incidence of DVT is distributed relatively equally across trimesters.
  • Concomitant diseases such as systemic lupus erythematous or sickle cell disease along other risk factors including obesity, decreased mobility, increased age, and smoking further elevates the thrombosis risk.
  • Predisposing factors: It has been observed that the pregnant women over 35yrs of age have a 1.38 fold increased risk of having a clotting event during the peripartum period. Additionally, women who have had spontaneous clotting events in the past have an increased risk of developing a second event with an estimated rate of recurrence of 10.9% during pregnancy.
  • Overall, both the physiologic and anatomic changes of pregnancy take several weeks to resolve after delivery, and the risk of thrombosis remains elevated compared to pregnancy until approximately 6 weeks postpartum.

Heparin-induced thrombocytopenia (HIT)

  • Heparin is a commonly used anticoagulant and under certain circumstances, arterial and venous thrombosis concomitantly with thrombocytopenia paradoxically results from its prolonged administration which is called heparin-induced thrombocytopenia (HIT). The conformational change of heparin following heparin binding to platelet factor 4 triggers antibody production to heparin. Subsequently, monocytes become activated and attack the vascular endothelium leading to thrombotic events.
  • Type-I HIT: Platelets show a weak reduction and have little clinical consequences.
  • Type-II HIT: It characterizes the strong reduction of thrombocytes and serious clinical sequelae.

Trauma

  • Trauma causes the procoagulant disbalance which is more pronounced during the first 24 hours following injury and in women.
  • The onset of respiratory distress syndrome and multiorgan failure following trauma has been correlated with elevated tissue factor.

Inflammatory and hypercoagulable state

  • There is an interplay between inflammation and the coagulation system as inflammation triggers a hypercoagulable state which can be observed clinically in patients with purpura, vasculitis, and septic thromboembolism.
  • Endotoxin activates the complement system leading to thrombocytopenia and hypercoagulability. Moreover, coagulation helps to limit the expansion of infection and some bacteria use fibrinolytic properties to oppose this response. The cytomegaly virus (CMV) has correlations to atherogenesis through a change of the cellular lipid metabolism and leukocyte adherence.
  • Autoimmune diseases like systemic lupus erythematosus, immune thrombocytopenic purpura, polyarteritis nodosa, polymyositis, dermatomyositis, inflammatory bowel disease, and Behcet's syndrome increase the risk of thrombotic events. Other conditions associated with a hypercoagulable state include myeloproliferative disorders, multiple myeloma, paroxysmal nocturnal hemoglobinuria, heart failure.
  • Cardiac events: The endothelium of the left atrial appendage (LAA) showed higher expression of tissue factor and plasminogen activator inhibitor compared to the right atrial appendage. This inherent prothrombotic property of the LAA in addition to flow disturbances of atrial fibrillation leads to thromboembolic events.

References

  1. 1.0 1.1 1.2 1.3 Seligsohn U, Lubetsky A (2001). "Genetic susceptibility to venous thrombosis". N Engl J Med. 344 (16): 1222–31. doi:10.1056/NEJM200104193441607. PMID 11309638.
  2. EGEBERG O (1965). "INHERITED ANTITHROMBIN DEFICIENCY CAUSING THROMBOPHILIA". Thromb Diath Haemorrh. 13: 516–30. PMID 14347873.
  3. Poort SR, Rosendaal FR, Reitsma PH, Bertina RM (1996). "A common genetic variation in the 3'-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis". Blood. 88 (10): 3698–703. PMID 8916933.
  4. Cunningham MT, Brandt JT, Laposata M, Olson JD (2002). "Laboratory diagnosis of dysfibrinogenemia". Arch Pathol Lab Med. 126 (4): 499–505. doi:10.1043/0003-9985(2002)126<0499:LDOD>2.0.CO;2. PMID 11900586.

Template:WH Template:WS