Pulmonary embolism natural history, complications and prognosis
Pulmonary Embolism Microchapters |
Diagnosis |
---|
Pulmonary Embolism Assessment of Probability of Subsequent VTE and Risk Scores |
Treatment |
Follow-Up |
Special Scenario |
Trials |
Case Studies |
Pulmonary embolism natural history, complications and prognosis On the Web |
FDA on Pulmonary embolism natural history, complications and prognosis |
CDC on Pulmonary embolism natural history, complications and prognosis |
Pulmonary embolism natural history, complications and prognosis in the news |
Blogs on Pulmonary embolism natural history, complications and prognosis |
Directions to Hospitals Treating Pulmonary embolism natural history, complications and prognosis |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editors-in-Chief: Ujjwal Rastogi, MBBS [2]
Overview
Pulmonary embolism in mostly a a consequence of Deep vein thrombosis, thus natural history of VTE should be considered as a whole instead of separately looking at DVT and PE[1].
Natural History
Approximately one-third of patients with pulmonary embolism who are not treated will die. without treatment, usually from recurrent PE. However, with diagnosis and treatment, the mortality rate is only ~ 2 – 8%. Unfortunately, 2/3 of all cases of PE are not diagnosed untill autopsy.
Prognosis
Mortality from untreated PE is said to be 26%. This figure comes from a trial published in 1960 by Barrit and Jordan[2] which compared anticoagulation against placebo for the management of PE. Barritt and Jordan performed their study in the Bristol Royal Infirmary in 1957. This study is the only placebo controlled trial ever to examine the place of anticoagulants in the treatment of PE, the results of which were so convincing that the trial has never been repeated as to do so would be considered unethical. That said, the reported mortality rate of 26% in the placebo group is probably an overstatement, given that the technology of the day may have detected only severe PEs.
Prognosis depends on:
- The amount of lung that is affected
- Co-existence of other medical conditions; chronic embolisation to the lung can lead to pulmonary hypertension.
Prognostic Assessment
Factors predicting mortality in pulmonary embolism patients are:
- Clinical Assessment of Haemodynamic Status
Observational studies like International COoperative Pulmonary Embolism Registry (IOCPER) and Management and Prognosis in Pulmonary Embolism Trial (MAPPET) have shown that Shock and hypotension are principal markers of high risk of early death in acute PE.
Post hoc analysis of ICOPER study data showed that the 90-day all-cause mortality rate was 52.4% (95% CI,43.3–62.1%) in patients with systolic blood pressure less than 90 mmHg compared with 14.7% (95% CI, 13.3–16.2%) in normotensive patients[3].
- Markers of Right ventricular dysfunction (RVD)[4]
According to PESI (Pulmonary Embolism Severity Index) trial, Hypotension (blood pressure <100 mm Hg) is a significant risk factor causing mortality in half of the patient group [5].
Trials reporting significance of RV dysfunction (RVD) in Pulmonary embolism (assessed by echocardiography)
Study | Year | Patients (n) | Blood pressure | Echocardiographic criteria | RVD(present) vs. RVD(absent): Mortality percentage(%) |
---|---|---|---|---|---|
Goldhaber et al.[6] | 1993 | 101 | Normotensive | RV hypokinesis and dilatation | 4.3% vs. 0% |
Ribeiro et al. [7] | 1997 | 126 | Normotensive and hypotensive | RVD | 12.8% vs. 0% |
Kasper et al.[8] | 1997 | 317 | Normotensive and hypotensive | RV >30 mm or TI >2.8 m/s | 13% vs. 0.9% |
Grifoni et al.[9] | 2000 | 162 | BP ≥ 100 mmHg | Atleast one of the following
|
4.6% vs. 0% |
Kucher et al.[10] | 2005 | 1035 | BP ≤ 90 mmHg | RVD | 16.3% vs. 9.4% |
Abbreviations Used: RV , right ventricle; TI, tricuspid insufficiency; LV, left ventricle; AcT, ACceleration Time of right ventricular ejection; TIPG, tricuspid insufficiency peak gradient.
- Markers of Myocardial Injury
- Additional Risk Markers
There is controversy over whether or not small subsegmental PEs need to be treated at all[11] and some evidence exists that patients with subsegmental PEs may do well without treatment.[12][13]
References
- ↑ Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P; et al. (2008). "Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC)". Eur Heart J. 29 (18): 2276–315. doi:10.1093/eurheartj/ehn310. PMID 18757870.
- ↑ "Anticoagulant drugs in the treatment of pulmonary embolism: a controlled trial". Lancet. 1: 1309&ndash, 1312. 1960. PMID 13797091. Text " Barritt DW, Jorden SC " ignored (help)
- ↑ Kucher N, Rossi E, De Rosa M, Goldhaber SZ (2006). "Massive pulmonary embolism". Circulation. 113 (4): 577–82. doi:10.1161/CIRCULATIONAHA.105.592592. PMID 16432055.
- ↑ Konstantinides S (2005). "Pulmonary embolism: impact of right ventricular dysfunction". Curr Opin Cardiol. 20 (6): 496–501. PMID 16234620.
- ↑ Donzé J, Le Gal G, Fine MJ, Roy PM, Sanchez O, Verschuren F; et al. (2008). "Prospective validation of the Pulmonary Embolism Severity Index. A clinical prognostic model for pulmonary embolism". Thromb Haemost. 100 (5): 943–8. PMID 18989542.
- ↑ Goldhaber SZ, Haire WD, Feldstein ML, Miller M, Toltzis R, Smith JL; et al. (1993). "Alteplase versus heparin in acute pulmonary embolism: randomised trial assessing right-ventricular function and pulmonary perfusion". Lancet. 341 (8844): 507–11. PMID 8094768.
- ↑ Ribeiro A, Lindmarker P, Juhlin-Dannfelt A, Johnsson H, Jorfeldt L (1997). "Echocardiography Doppler in pulmonary embolism: right ventricular dysfunction as a predictor of mortality rate". Am Heart J. 134 (3): 479–87. PMID 9327706.
- ↑ Kasper W, Konstantinides S, Geibel A, Tiede N, Krause T, Just H (1997). "Prognostic significance of right ventricular afterload stress detected by echocardiography in patients with clinically suspected pulmonary embolism". Heart. 77 (4): 346–9. PMC 484729. PMID 9155614.
- ↑ Grifoni S, Olivotto I, Cecchini P, Pieralli F, Camaiti A, Santoro G; et al. (2000). "Short-term clinical outcome of patients with acute pulmonary embolism, normal blood pressure, and echocardiographic right ventricular dysfunction". Circulation. 101 (24): 2817–22. PMID 10859287.
- ↑ Kucher N, Rossi E, De Rosa M, Goldhaber SZ (2005). "Prognostic role of echocardiography among patients with acute pulmonary embolism and a systolic arterial pressure of 90 mm Hg or higher". Arch Intern Med. 165 (15): 1777–81. doi:10.1001/archinte.165.15.1777. PMID 16087827.
- ↑ Le Gal G, Righini M, Parent F, van Strijen M, Couturaud F (2006). "Diagnosis and management of subsegmental pulmonary embolism". J Thromb Haemost. 4 (4): 724–31. PMID 16634736.
- ↑ Perrier A, Bounameaux H (2006). "Accuracy or outcome in suspected pulmonary embolism". N Engl J Med. 354 (22): 2383–5. PMID 16738276.
- ↑ Stein P, Fowler S, Goodman L, Gottschalk A, Hales C, Hull R, Leeper K, Popovich J, Quinn D, Sos T, Sostman H, Tapson V, Wakefield T, Weg J, Woodard P (2006). "Multidetector computed tomography for acute pulmonary embolism". N Engl J Med. 354 (22): 2317–27. PMID 16738268.