Breast cancer chemotherapy

Jump to navigation Jump to search

Breast Cancer Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Breast cancer from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic study of choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

CT scan

MRI

Echocardiography or Ultrasound

Other Imaging Studies

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Breast cancer chemotherapy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Breast cancer chemotherapy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Breast cancer chemotherapy

CDC on Breast cancer chemotherapy

Breast cancer chemotherapy in the news

Blogs on Breast cancer chemotherapy

Directions to Hospitals Treating Breast cancer

Risk calculators and risk factors for Breast cancer chemotherapy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1], Assistant Editor(s)-In-Chief: Jack Khouri

Overview

Breast cancer chemotherapy refers to the use of cytotoxic drugs (chemotherapy) in the treatment of breast cancer. The aim of chemotherapy is to prevent the growth of micrometastatic disease that is responsible for systemic disease recurrence.

Types

Chemotherapy can be given both before and after surgery. Neoadjuvant chemotherapy is used to shrink the size of a tumor prior to surgery. Adjuvant chemotherapy is given after surgery to reduce the risk of recurrence. Palliative chemotherapy is used to control (but not cure) the cancer in settings in which the cancer has spread beyond the breast and localized lymph nodes.

Regimens

Several different chemotherapy regimens may be used.[1] Determining the appropriate regimen depends on many factors, including the character of the tumor, lymph node status, and the age and health of the patient. In general, chemotherapy has increasing side effects as the patient's age passes 65. The following is a list of commonly used adjuvant chemotherapy for breast cancer:

Since chemotherapy affects the production of white blood cells, granulocyte colony-stimulating factor (G-CSF) is sometimes administered along with chemotherapy. This has been shown to reduce, though not completely prevent, the rate of infection and low white cell count. Most adjuvant breast cancer chemotherapy regimens do not routinely require growth factor support except for those associated with a high incidence of bone marrow suppression and infection. These may include chemotherapy given in the dose dense fashion i.e. 2-weekly instead of 3-weekly or TAC chemotherapy (see above).

Adjuvant Chemotherapy for Early-Stage Breast Cancer

Risk Stratification

The decision of whether a patient should or not receive adjuvant chemotherapy is generally made by estimating the individual's risk for recurrence and the expected benefit of therapy. Risk stratification is based on tumor size, nodal status, histologic grade, hormone receptor and Her-2 statuses.

Hormone Receptor Status

Hormone receptor status is a definite prognostic and predictive factor. Most breast cancers are Estrogen receptor- positive. ER-negative tumors have higher risk of recurrence during 1 to 2 years after surgery that declines rapidly thereafter; however, ER-positive tumors preserve the ability to recur many years after surgery. The role of ER status as a predictive factor was assessed in a retrospective subset analysis of three cooperative group adjuvant chemotherapy trials in women who had node-positive breast cancer results showed that absolute benefits due to chemotherapy were greater for patients with ER-negative compared with ER-positive tumors: 22.8% more ER-negative patients survived to 5 years disease-free if receiving chemotherapy vs 7.0% for ER-positive patients; corresponding improvements for overall survival were 16.7% vs 4.0%.[2]

HER2 Status

The HER2 receptor is overexpressed in approximately 20% to 25% of breast cancers.1 HER2 status is an important predictive factor. There is evidence that Trastuzumab exhibits synergy when administered in combination with other cytotoxic therapies, such as taxanes and vinorelbine, among HER2-positive patients. [3]

References

  1. von Minckwitz, G (Mar 2007). "Docetaxel/anthracycline combinations for breast cancer treatment". Expert Opinion on Pharmacotherapy. 8 (4): 485–495.
  2. Berry DA, Cirrincione C, Henderson IC, Citron ML, Budman DR, Goldstein LJ et al. (2006) Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA 295 (14):1658-67. DOI:10.1001/jama.295.14.1658 PMID: 16609087
  3. Marty M, Cognetti F, Maraninchi D, Snyder R, Mauriac L, Tubiana-Hulin M et al. (2005) Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol 23 (19):4265-74. DOI:10.1200/JCO.2005.04.173 PMID: 15911866

Template:WS