Prostate cancer medical therapy
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Prostate cancer Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Prostate cancer medical therapy On the Web |
American Roentgen Ray Society Images of Prostate cancer medical therapy |
Risk calculators and risk factors for Prostate cancer medical therapy |
Overview
Therapy
Natural therapy
As an alternative to active surveillance or invasive treatments, which does nothing to change the course of disease, a growing number of clinicians and researchers are looking at non-invasive ways to help men with apparently localized prostate cancer. Perhaps most convincing among this group are Dean Ornish, MD and colleagues, previously made famous for showing that aggressive lifestyle changes can reverse atherosclerosis, and now showing that PSA can be lowered in men with apparent localized prostate cancer using a vegan diet (fish allowed), regular exercise, and stress reduction.[1] These results have so far proven durable after two-years' treatment.[2]
Many other single agents have been shown to reduce PSA, slow PSA doubling times, or have similar effects on secondary markers in men with localized cancer in short term trials, such as the Wonderful variety of pomegranate juice 8 oz daily or genistein, an isoflavone found in various legumes, 60 mg per day.[3][4] The potential of using multiple such agents in concert, let alone combining them with lifestyle changes, has not yet been studied but the potential is great. This is particularly true because most of these natural approaches have very low adverse effect rates, and in fact tend to help other risk factors and disease conditions such as atherosclerosis, diabetes, and risk for other cancers at the same time they are helping slow down prostate cancer. A more thorough review of natural approaches to prostate cancer has been published.[5]
Radiation therapy
Radiation therapy, also known as radiotherapy, is often used to treat all stages of prostate cancer, or when surgery fails. Radiotherapy uses ionizing radiation to kill prostate cancer cells. When absorbed in tissue, Ionizing radiation such as Gamma and x-rays damage the DNA in cells, which increases the probability of apoptosis (cell death). Two different kinds of radiation therapy are used in prostate cancer treatment: external beam radiation therapy and brachytherapy (specifically prostate brachytherapy).
External beam radiation therapy uses a linear accelerator to produce high-energy x-rays which are directed in a beam towards the prostate. A technique called Intensity Modulated Radiation Therapy (IMRT) may be used to adjust the radiation beam to conform with the shape of the tumor, allowing higher doses to be given to the prostate and seminal vesicles with less damage to the bladder and rectum. External beam radiation therapy is generally given over several weeks, with daily visits to a radiation therapy center. New types of radiation therapy may have fewer side effects than traditional treatment. One of these is Tomotherapy.
Permanent implant brachytherapy is a popular treatment choice for patients with low to intermediate risk features, can be performed on an outpatient basis, and is associated with good 10-year outcomes with relatively low morbidity[6] It involves the placement of about 100 small "seeds" containing radioactive material (such as iodine-125 or palladium-103) with a needle through the skin of the perineum directly into the tumor while under spinal or general anesthetic. These seeds emit lower-energy X-rays which are only able to travel a short distance. Although the seeds eventually become inert, they remain in the prostate permanently. The risk of exposure to others from men with implanted seeds is generally accepted to be insignificant.[7]
Radiation therapy is commonly used in prostate cancer treatment. It may be used instead of surgery or after surgery in early stage prostate cancer. In advanced stages of prostate cancer radiation is used to treat painful bone metastases. Radiation treatments also can be combined with hormonal therapy for intermediate risk disease, when radiation therapy alone is less likely to cure the cancer. Some radiation oncologists combine external beam radiation and brachytherapy for intermediate to high risk situations. One study found that the combination of six months of androgen suppressive therapy combined with external beam radiation had improved survival compared to radiation alone in patients with localized prostate cancer.[8] Others use a "triple modality" combination of external beam radiation therapy, brachytherapy, and hormonal therapy.
Radiation therapy uses high-energy rays or particles to kill cancer cells.[9] When delivered in the correct dosage, radiation can reduce the risk of recurrence.
Less common applications for radiotherapy are when cancer is compressing the spinal cord, or sometimes after surgery, such as when cancer is found in the seminal vesicles, in the lymph nodes, outside the prostate capsule, or at the margins of the biopsy.
Radiation therapy is often offered to men whose medical problems make surgery more risky. Radiation therapy appears to cure small tumors that are confined to the prostate just about as well as surgery. However, some issues remain unresolved, such as whether radiation should be given to the rest of the pelvis, how much the absorbed dose should be, and whether hormonal therapy should be given at the same time.
Side effects of radiation therapy might occur after a few weeks into treatment. Both types of radiation therapy may cause diarrhea and mild rectal bleeding due to radiation proctitis, as well as urinary incontinence and impotence. Symptoms tend to improve over time. Rates for impotence when comparing radiation to nerve-sparing surgery are similar. Radiation has lower rates of incontinence but higher rates of occasional mild rectal bleeding.[10] Men who have undergone external beam radiation therapy may have a slightly higher risk of later developing colon cancer and bladder cancer.[11]
References
- ↑ Ornish, D (2005). "Intensive lifestyle changes may affect the progression of prostate cancer". J Urol. 174 (3): 1065–70. PMID 16094059. Unknown parameter
|coauthors=
ignored (help) - ↑ Frattaroli, J (2008). "Clinical events in Prostate CAncer Lifestyle Trial: Results from two years of follow-up". Urology. epub ahead of print. PMID 18602144. Unknown parameter
|coauthors=
ignored (help); Unknown parameter|month=
ignored (help) - ↑ Pantuck, AJ (2006). "Phase II study of pomegranate juice for men with rising prostate-specific antigen following surgery or radiation for prostate cancer". Clin Cancer Res. 12 (13): 4018–26. PMID 16818701. Unknown parameter
|coauthors=
ignored (help) - ↑ Kumar, NB (2004). "The specific role of isoflavones in reducing prostate cancer risk". Prostate. 59 (2): 141–7. PMID 15042614. Unknown parameter
|coauthors=
ignored (help) - ↑ Yarnell, E (1999). "A naturopathic approach to prostate cancer. Part 2: Guidelines for treatment and prevention". Altern Complemen Ther. 5 (6): 360–8.
- ↑ Nag, S (1999). "American Brachytherapy Society Recommendations for Transperineal Permanent Brachytherapy of Prostate Cancer". Int. J. Rad. Onc. Biol. Phys. 44 (4): 789–799. ?. Unknown parameter
|month=
ignored (help); Unknown parameter|coauthors=
ignored (help) Review. - ↑ Perez, CA (1993). "Localized carcinoma of the prostate (stages T1B, T1C, T2, and T3). Review of management with external beam radiation therapy". Cancer. 72 (11): 3156–73. doi:10.1002/1097-0142(19931201)72:11<3156::AID-CNCR2820721106>3.0.CO;2-G. PMID 7694785. Unknown parameter
|month=
ignored (help); Unknown parameter|coauthors=
ignored (help) Review. - ↑ D'Amico AV, Manola J, Loffredo M, Renshaw AA, DellaCroce A, Kantoff PW (2004). "6-month androgen suppression plus radiation therapy vs radiation therapy alone for patients with clinically localized prostate cancer: a randomized controlled trial". JAMA. 292 (7): 821–7. doi:10.1001/jama.292.7.821. PMID 15315996.
- ↑ American Cancer Society: Radiation Treatment
- ↑ Lawton, CA (1991). "Long-term treatment sequelae following external beam irradiation for adenocarcinoma of the prostate: analysis of RTOG studies 7506 and 7706". Int J Radiat Oncol Biol Phys. 21 (4): 935–9. PMID 1917622. Unknown parameter
|month=
ignored (help); Unknown parameter|coauthors=
ignored (help) - ↑ Brenner, DJ (2000). "Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery". Cancer. 88 (2): 398–406. doi:10.1002/(SICI)1097-0142(20000115)88:2<398::AID-CNCR22>3.0.CO;2-V. PMID 10640974. Unknown parameter
|month=
ignored (help); Unknown parameter|coauthors=
ignored (help)