Renal cell carcinoma medical therapy

Jump to navigation Jump to search

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Renal cell carcinoma Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Renal cell carcinoma from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural history, Complications and Prognosis

Diagnosis

Staging

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Renal cell carcinoma medical therapy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Renal cell carcinoma medical therapy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Renal cell carcinoma medical therapy

CDC on Renal cell carcinoma medical therapy

Renal cell carcinoma medical therapy in the news

Blogs on Renal cell carcinoma medical therapy

Directions to Hospitals Treating Renal cell carcinoma

Risk calculators and risk factors for Renal cell carcinoma medical therapy

Overview

If the tumor is confined to the kidneys (occurs in about 40% of cases), then RCC can be treated roughly 90% of the time with surgery. If RCC has spread outside of the kidneys, often into the lymph nodes or the main vein of the kidney, then it is often treated with chemotherapy and other treatments.

Therapies

Watchful waiting

Small renal tumors represent the majority of tumors that are treated today by way of partial nephrectomy. The average growth of these masses is about 4-5 mm per year, and a significant proportion (up to 40%) of tumors less than 4cm in diameter are benign. More centers of excellence are incorporating needle biopsy to confirm the presence of malignant histology prior to recommending definitive surgical extirpation. In the elderly, patients with co-morbidities and in poor surgical candidates, small renal tumors may be monitored carefully with serial imaging. Most clinicians conservatively follow tumors up to a size threshold between 3-5 cm, beyond which the risk of distant spread (metastases) is about 5%.

Percutaneous therapies

Percutaneous, image-guided therapies, usually managed by radiologists, are being offered to patients with localized tumor, but who are not good candidates for a surgical procedure. This sort of procedure involves placing a probe through the skin and into the tumor using real-time imaging of both the probe tip and the tumor by computed tomography, ultrasound, or even magnetic resonance imaging guidance, and then destroying the tumor with heat (radiofrequency ablation) or cold (cryotherapy). These modalities are at a disadvantage compared to traditional surgery in that pathologic confirmation of complete tumor destruction is not possible.

Radiation therapy

Radiation therapy is not commonly used for treatment of renal cell carcinoma because it is usually not successful. Radiation therapy may be used to palliate the symptoms of skeletal metastases.

Medications

RCC "elicits an immune response, which occasionally results in dramatic spontaneous remissions." This has encouraged a strategy of using immunomodulating therapies, such as cancer vaccines and interleukin-2 (IL-2), to reproduce this response. IL-2 has produced "durable remissions" in a small number of patients, but with substantial toxicity. Another strategy is to restore the function of the VHL gene, which is to destroy proteins that promote inappropriate vascularization. Bevacizumab, an antibody to VEGF, has significantly prolonged time to progression, but phase 3 trials have not been published. Sunitinib (Sutent), sorafenib (Nexavar), and temsirolimus, which are small-molecule inhibitors of proteins, have been approved by the U.S. F.D.A.[1]

Sorafenib was FDA approved in December 2005 for treatment of advanced renal cell cancer, the first receptor tyrosine kinase (RTK) inhibitor indicated for this use.

A month later, Sunitinib was approved as well. Sunitinib—an oral, small-molecule, multi-targeted (RTK) inhibitor—and sorafenib both interfere with tumor growth by inhibiting angiogenesis as well as tumor cell proliferation. Sunitinib appears to offer greater potency against advanced RCC, perhaps because it inhibits more receptors than sorafenib. However, these agents have not been directly compared against one another in a single trial. [2][3]

Recently the first Phase III study comparing an RTKI with cytokine therapy was published in the New England Journal of Medicine. This study showed that Sunitinib offered superior efficacy compared with interferon-α. Progression-free survival (primary endpoint) was more than doubled. The benefit for sunitinib was significant across all major patient subgroups, including those with a poor prognosis at baseline. 28% of sunitinib patients had significant tumor shrinkage compared with only 5% of patients who received interferon-α. Although overall survival data are not yet mature, there is a clear trend toward improved survival with sunitinib. Patients receiving sunitinib also reported a significantly better quality of life than those treated with IFNa. [2] Based on these results, lead investigator Dr. Robert Motzer announced at ASCO 2006 that “Sunitinib is the new reference standard for the first-line treatment of mRCC.” [3]

Temsirolimus (CCI-779) is an inhibitor of mTOR kinase (mamallian target of rapamycin) that was shown to prolong overall survival vs. interferon-α in patients with previously untreated metastatic renal cell carcinoma with three or more poor prognostic features. The results of this Phase III randomized study were presented at the 2006 annual meeting of the American Society of Clinical Oncology (www.ASCO.org).

Chemotherapy

Chemotherapy may be used in some cases, but cure is unlikely unless all the cancer can be removed with surgery. The use of Tyrosine Kinase (TK) inhibitors, such as Sunitinib and Sorafenib, and Temsirolimus are described in a different section.

Cryoablation

This involves destroying the kidney tumor without surgery, by freezing the tumor. The process can remove 95% of tumors in one treatment and can be tolerated by patients who are not good candidates for surgery (older or weak patients). [4].

The outcome varies depending on the size of the tumor, whether it is confined to the kidney or not, and the presence or absence of metastatic spread. The Fuhrman grading, which measures the aggressiveness of the tumor, may also affect survival, though the data is not as strong to support this.

The five year survival rate is around 90-95% for tumors less than 4 cm. For larger tumors confined to the kidney without venous invasion, survival is still relatively good at 80-85%. For tumors that extend through the renal capsule and out of the local fascial investments, the survivability reduces to near 60%. If it has metastasized to the lymph nodes, the 5-year survival is around 5 % to 15 %. If it has spread metastatically to other organs, the 5-year survival rate is less than 5 %.

For those that have tumor recurrence after surgery, the prognosis is generally poor. Renal cell carcinoma does not generally respond to chemotherapy or radiation. Immunotherapy, which attempts to induce the body to attack the remaining cancer cells, has shown promise. Recent trials are testing newer agents, though the current complete remission rate with these approaches are still low, around 12-20% in most series.

References

  1. Michaelson MD, Iliopoulos O, McDermott DF, McGovern FJ, Harisinghani MG, Oliva E (2008). "Case records of the Massachusetts General Hospital. Case 17-2008. A 63-year-old man with metastatic renal-cell carcinoma". N Engl J Med. 358 (22): 2389–96. doi:10.1056/NEJMcpc0802449. PMID 18509125. Unknown parameter |month= ignored (help)
  2. Motzer RJ; et al. (2007). "Sunitinib versus interferon alfa in metastatic renal-cell carcinoma". N Engl J Med. 356 (2): 115–124. doi:10.1056/NEJMoa065044. PMID 17215529.
  3. Motzer RJ; et al. "Phase 3 Randomized Trial of Sunitinib malate (SU11248) versus Interferon-alfa as First-line Systemic Therapy for Patients with Metastatic Renal Cell Carcinoma". ASCO 2006.
  4. <http://www.yourcancertoday.com/news/drnakada.html" title=" Dr. Nakada, on Your Cancer Today