Apnea pathophysiology
Apnea Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Apnea pathophysiology On the Web |
American Roentgen Ray Society Images of Apnea pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Overview
Pathophysiology
Under normal conditions, humans cannot store much oxygen in the body. Apnea of more than approximately one minute's duration therefore leads to severe lack of oxygen in the blood circulation. Permanent brain damage can occur after as little as three minutes and death will inevitably ensue after a few more minutes unless ventilation is restored. However, under special circumstances such as hypothermia, hyperbaric oxygenation, apneic oxygenation (see below), or extracorporeal membrane oxygenation, much longer periods of apnea may be tolerated without severe consequences.
Untrained humans cannot sustain voluntary apnea for more than one or two minutes. The reason for this is that the rate of breathing and the volume of each breath are tightly regulated to maintain constant values of CO2 tension and pH of the blood. In apnea, CO2 is not removed through the lungs and accumulates in the blood. The consequent rise in CO2 tension and drop in pH result in stimulation of the respiratory centre in the brain which eventually cannot be overcome voluntarily.
When a person is immersed in water, physiological changes due to the mammalian diving reflex enable somewhat longer tolerance of apnea even in untrained persons. Tolerance can in addition be trained. The ancient technique of free-diving requires breath-holding, and world-class free-divers can indeed hold their breath underwater up to depths of 223 metres and for more than eight minutes. An apneist, in this context, is someone who can hold their breath for a long time.