Diabetes and inflammation
_NOTOC__
Infobox goes here
{{SI}}
For patient information, click Insert page name here
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Synonyms and keywords:
Overview
In 1923, when Banting and Bests were awarded the Nobel Prize for insulin discovery, most researchers thought that diabetes in a solved problem. However despite the advances in the blood glucose management, there is no cure for diabetes and preventing its major complications. Scientists observed that people with type 2 diabetes have overly active and sometimes dysfunctional immune system, which are linked to these complications. Nowadays diabetes is merely the disease of high blood glucose, or lack of insulin, but chronic inflammatory state and the overabundance of reactive oxygen species (ROS)[1].
Pathophysiology
What is inflammation?
Inflammation is part of a healthy immune response, an orchestrated onslaught of cells and chemicals that heal injury and fight infection. Chronic inflammation is a process occurs throughout the body when something activated the immune system and this trigger is long enough that certain stop signals are not able to prevent it. This inflammation results into the cascade of reactive oxygen species and further damage [1] [2]. In 1993, scientists showed that the tumor necrosis factor α (TNF-α) expression was upregulated in the adipose tissue of obese mice with type 2 diabetes [3]. When they breed mice that were deficient in TNF-α, diabetes did not develope. So it seems that inflammation precede diabetes, long before diagnosis.
Obesity is the link between diabetes and inflammation
Leukocytes and innate immunity is the main source of inflammation in humans. So why is inflammation increased in diabetes? In lower species, adipose tissue is the mediator of innate immunity. In insects, adipocytes have a receptor for the cell wall of bacteria and fungi, called toll like receptor. It is responsible for nuclear factor 1 β (NF1β) activation which induces the secretion of antibacterial peptides and other defense mechanisms. This leads to the cascade of inflammation. Fat tissue also manages the storage of lipids in the liver ([4]. During evolution, in the vertebrates a third organ was developed to protect the body against foreign attack. However some aspects of innate immunity are still preserved in the adipocytes. Moreover adipose tissue is populated with tissue resident macrophages, which is significantly increase by diet induced weigh gain [5].
How fat tissue is the source of inflammation in obesity? The first theory is that there is an overabundance of energy in the form of glucose and lipid in obesity. This leads to mitochondrial dysfunction and ROS production from the adipocytes. ROS can activate the immunity by inducing the NF1β and hence secretion of the inflammatory cytokines [5]. The second one is hypoxia theory reported by Trayhurn and Wood [6]. The fat cells expand in weight gain. They sometimes do not get enough oxygen .In response to hypoxia; they induce cytokines, which activate the angiogenesis, metabolism and cellular stress. These cytokines induce insulin resistance and result into diabetes. The adipose tissue is not usually considered as an immune or inflammatory organ, however these observations provide evidence for the link between obesity and inflammation.
Systemic Inflammation in diabetes
A growing body of evidence demonstrates that the adipose tissue inflammation results into the systemic inflammation(Calle and Fernandez, 2012). C reactive protein (CRP) is an inflammatory marker produced by the liver in response to TNFα and Interleukin-6. CRP has been shown to precede diabetes years before diagnosis. Elevated CRP levels are unquestionably associated with obesity and increased risk of cardiovascular disorders. Patients with a high CRP levels are at a higher mortality risk from heart disease. Other inflammatory markers are also disportionaltely elevated in diabetes which results into systemic inflammation. The systemic inflammation result into insulin resistance and insulin resistance results into obesity. Hence both diabetes and inflammation reinforce each other via a positive feedback (Calle and Fernandez, 2012).
Genetics
Associated Conditions
Gross Pathology
Microscopic Pathology
Causes
Common Causes
Causes by Organ System
Cardiovascular | No underlying causes |
Chemical / poisoning | No underlying causes |
Dermatologic | No underlying causes |
Drug Side Effect | No underlying causes |
Ear Nose Throat | No underlying causes |
Endocrine | No underlying causes |
Environmental | No underlying causes |
Gastroenterologic | No underlying causes |
Genetic | No underlying causes |
Hematologic | No underlying causes |
Iatrogenic | No underlying causes |
Infectious Disease | No underlying causes |
Musculoskeletal / Ortho | No underlying causes |
Neurologic | No underlying causes |
Nutritional / Metabolic | No underlying causes |
Obstetric/Gynecologic | No underlying causes |
Oncologic | No underlying causes |
Opthalmologic | No underlying causes |
Overdose / Toxicity | No underlying causes |
Psychiatric | No underlying causes |
Pulmonary | No underlying causes |
Renal / Electrolyte | No underlying causes |
Rheum / Immune / Allergy | No underlying causes |
Sexual | No underlying causes |
Trauma | No underlying causes |
Urologic | No underlying causes |
Dental | No underlying causes |
Miscellaneous | No underlying causes |
Causes in Alphabetical Order
- A...
- Z...
Make sure that each diagnosis is linked to a page.
Differentiating type page name here from other Diseases
Epidemiology and Demographics
Age
Gender
Race
Developed Countries
Developing Countries
Risk Factors
Screening
Natural History, Complications and Prognosis
Diagnosis
History
A directed history should be obtained to ascertain
Symptoms
"Type symptom here" is pathognomonic of the "type disease name here".
"Type non specific symptoms" may be present.
Past Medical History
Family History
Social History
Occupational
Alcohol
The frequency and amount of alcohol consumption should be characterized.
Drug Use
Smoking
Allergies
Physical Examination
Appearance of the Patient
Vital Signs
Skin
Head
Eyes
Ear
Nose
Throat
Heart
Lungs
Abdomen
Extremities
Neurologic
Genitals
Other
Laboratory Findings
Electrolyte and Biomarker Studies
Electrocardiogram
Chest X Ray
CT
MRI
Echocardiography or Ultrasound
Other Imaging Findings
Other Diagnostic Studies
Treatment
Pharmacotherapy
Acute Pharmacotherapies
Chronic Pharmacotherapies
Surgery and Device Based Therapy
Indications for Surgery
Pre-Operative Assessment
Post-Operative Management
Transplantation
Primary Prevention
Secondary Prevention
Cost-Effectiveness of Therapy
Future or Investigational Therapies
References
- ↑ 1.0 1.1 Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ; et al. (2003). "Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance". J Clin Invest. 112 (12): 1821–30. doi:10.1172/JCI19451. PMC 296998. PMID 14679177.
- ↑ Calle MC, Fernandez ML (2012). "Inflammation and type 2 diabetes". Diabetes Metab. 38 (3): 183–91. doi:10.1016/j.diabet.2011.11.006. PMID 22252015.
- ↑ Hotamisligil GS, Shargill NS, Spiegelman BM (1993). "Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance". Science. 259 (5091): 87–91. PMID 7678183.
- ↑ Rolff J, Siva-Jothy MT (2003). "Invertebrate ecological immunology". Science. 301 (5632): 472–5. doi:10.1126/science.1080623. PMID 12881560.
- ↑ 5.0 5.1 Berg AH, Scherer PE (2005). "Adipose tissue, inflammation, and cardiovascular disease". Circ Res. 96 (9): 939–49. doi:10.1161/01.RES.0000163635.62927.34. PMID 15890981.
- ↑ Trayhurn P, Wood IS (2004). "Adipokines: inflammation and the pleiotropic role of white adipose tissue". Br J Nutr. 92 (3): 347–55. PMID 15469638.