Biliary atresia pathophysiology

Revision as of 20:42, 19 November 2012 by Maheep Sangha (talk | contribs) (Created page with "__NOTOC__ {{Biliary atresia}} {{CMG}} ==Pathophysiology== As the biliary tract cannot transport bile to the intestine, bile is retained in the liver (known as stasis) and...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Biliary atresia Microchapters

Home

Patient Information

Overview

Classification

Pathophysiology

Causes

Differentiating Biliary atresia from other Diseases

Epidemiology and Demographics

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Biliary atresia pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Biliary atresia pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Biliary atresia pathophysiology

CDC on Biliary atresia pathophysiology

Biliary atresia pathophysiology in the news

Blogs on Biliary atresia pathophysiology

Directions to Hospitals Treating Biliary atresia

Risk calculators and risk factors for Biliary atresia pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Pathophysiology

As the biliary tract cannot transport bile to the intestine, bile is retained in the liver (known as stasis) and results in cirrhosis of the liver.

There have been many theories about etiopathogenesis such as Reovirus 3 infection, congenital malformation, congenital CMV infection, autoimmune theory. This means that the etiology and pathogenesis of biliary atresia are largely unknown. However, there have been extensive studies about the pathogenesis and proper management of progressive liver fibrosis, which is arguably one of the most important aspects of biliary atresia patients. As the biliary tract cannot transport bile to the intestine, bile is retained in the liver (known as stasis) and results in cirrhosis of the liver. Proliferation of the small bile ductules occur, and peribiliary fibroblasts become activated. These "reactive" biliary epithelial cells in cholestasis, unlike normal condition, produce and secrete various cytokines such as CCL-2 or MCP-1, Tumor necrosis factor (TNF), Interleukin-6 (IL-6), TGF-beta, Endothelin (ET), and nitric oxide (NO). Among these, TGF-beta is the most important profibrogenic cytokine that can be seen in liver fibrosis in chronic cholestasis. During the chronic activation of biliary epithelium and progressive fibrosis, afflicted patients eventually show signs and symptoms of portal hypertension (esophagogastric varix bleeding, hypersplenism, hepatorenal syndrome(HRS), hepatopulmonary syndrome(HPS)). The latter two syndromes are essentially caused by systemic mediators that maintain the body within the hyperdynamic states.

Associated anomalies include, in about 20% cases,

References